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Abstract
Many markets, including markets for IPOs and debt issuances, are syndicated:

each winning bidder invites competitors to join its syndicate to complete production.
Using repeated extensive form games, we show that collusion in syndicated markets
may become easier as market concentration falls, and that market entry may facilitate
collusion. In particular, firms can sustain collusion by refusing to syndicate with any
firm that undercuts the collusive price (and thereby raising that firm’s production costs).
Our results can thus rationalize the paradoxical empirical observations that the IPO
underwriting market exhibits seemingly collusive pricing despite low levels of market
concentration.
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1 Introduction

The fees that investment banks collect for initial public offerings (IPOs) strongly suggest

collusive behavior, with apparent coordination on fees equal to 7% of issuance proceeds for

small- to moderate-sized IPOs (Chen and RitterChen and Ritter, 20002000).11 At the same time, the number of

investment banks running moderately sized IPOs is quite large, and there appears to be a

nontrivial amount of entry and exit in the market (HansenHansen, 20012001); this presents a puzzle,

as standard industrial organization intuitions would therefore suggest that pricing should

be competitive. In this paper, we provide a pathway by which the structure of the IPO

underwriting market—and other similarly organized markets—can make it possible to sustain

high prices even in the presence of low market concentration.22

The market for running IPOs is syndicated; once an issuer contracts with an investment

bank to underwrite its IPO, that investment bank then organizes a syndicate to complete

the IPO. We show that the presence of syndication can reverse standard intuition regarding

the effect of market concentration. Indeed, below a certain level of concentration, the scope

for collusion in a syndicated market increases as concentration declines: Colluding firms

can punish a firm that undercuts the collusive price by refusing to participate in that firm’s

syndicate; this type of in-period punishment becomes more powerful as the market becomes

less concentrated, because there are greater returns to joint production when firms are smaller.

The collusive strategies we consider here just depend on the syndicated structure of the

market; thus, our work also demonstrates the potential for collusion in other settings where

syndication is prevalent. For instance, Officer et al.Officer et al. (20102010) raised concerns about collusion

among private equity firms working together on syndicated leveraged buyouts, and, in work

motivated by ours, Cai et al.Cai et al. (20182018) examined the scope for collusion in the syndicated lending
1The 7% spread has recently attracted the attention of Commissioner Robert J. Jackson Jr. of the Securities

and Exchange Commission who, noting that “middle-market entrepreneurs still have to pay 7% of what
they’ve created to access our public markets,” has become concerned that this “IPO tax” discourages firms
from going public (JacksonJackson, 20182018).

2The annual funding raised by firms through IPOs ranges from a few billion dollars to over $60 billion a
year (RitterRitter, 20182018); perhaps more importantly, an IPO is an essential step towards accessing the seasoned
equity market and public bond markets.
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market.33 Outside of the finance industry, syndication through horizontal subcontracting is

also common. Examples include construction, transportation, communications, and military

procurement.44 Moreover, antitrust authorities have noted that collusive behavior seems to be

more common in industries in which horizontal subcontracting is prominent; this experience

has led them to heighten scrutiny of those industries.55

We model a market with syndication as a repeated extensive form game. In each period,

firms compete on price for the opportunity to complete a single project. Upon being selected,

the chosen firm may invite additional firms to join in the production process, forming a

“syndicate.” Recruiting additional firms is valuable because each firm’s production cost is

convex in the amount of production assigned to that firm.66 Each invited firm then decides

whether to join the syndicate. Finally, the project is completed by the syndicate members,

payoffs are realized, and play proceeds to the next period.

We show that in markets with syndication, less concentrated markets may have prices that

are further from their marginal costs of production. In particular, the highest price that can

be sustained under equilibrium play is a U-shaped function of market concentration: When

markets are very concentrated, collusion can be sustained as in many standard industrial

organization models: after a firm undercuts on price, all firms revert to a “competitive”

equilibrium in which firms earn no profits in subsequent periods.77 However, when firms are
3Private equity raised around $230 billion (McKinsey & Co.McKinsey & Co., 20182018), with the specific syndicated (or club)

LBO deals studied in Officer et al.Officer et al. (20102010) alone peaking at $113 billion in 2007, while syndicated lending,
one of the most important mechanisms for firm borrowing, reached $2.7 trillion in issuance in the United
States in 2017 (Thompson ReutersThompson Reuters, 20192019).

4For a discussion of industries where horizontal subcontracting is important, see SpiegelSpiegel (19931993),
Aronstein et al.Aronstein et al. (19981998), Gil and MarionGil and Marion (20122012), and MarionMarion (20152015).

5See the U.S. Antitrust Guidelines for Collaboration Among Competitors (Federal Trade CommissionFederal Trade Commission,
20002000) and the Department of Justice primer on “Price Fixing, Bid Rigging, and Market Allocation Schemes:
What They Are and What to Look For” (Department of JusticeDepartment of Justice, 20152015), as well as the EU Guidelines on
the Applicability of Article 101 of the Treaty on the Functioning of the European Union to Horizontal
Co-operation Agreements (European CommissionEuropean Commission, 20112011).

6Convex production costs for underwriters of fixed size are a relatively standard assumption in the IPO
literature; see Khanna et al.Khanna et al. (20082008) for a microfoundation for this assumption based on an inelastic supply of
investment banking talent (and see also Lyandres et al.Lyandres et al. (20162016) for further discussion). Corwin and SchultzCorwin and Schultz
(20052005) provide a thorough discussion of the role of underwriting syndicates in the IPO process, with a
particular emphasis on the role of the syndicate in information production through access to investors; such
an information-based model is consistent with our assumed cost function.

7See, for instance, TiroleTirole (19881988).
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small, completing the project alone is very costly, and thus collusion can be sustained by in-

period punishments: after a firm undercuts on price, other firms can punish the undercutting

firm in the same period by refusing to join its syndicate (and thus dramatically increasing

the undercutting firm’s costs of production). Of course, such behavior by other firms must

itself be incentive compatible. Thus, firms that reject offers of syndication from a firm that

undercuts on price must be rewarded in future periods; moreover, to induce firms to turn

down more attractive syndication offers, those firms must be promised greater rewards in

subsequent periods.88

In repeated normal form games, punishments can be enforced using the simple penal

codes of AbreuAbreu (19861986), under which only one punishment strategy is needed for each player,

regardless of the timing or nature of the deviation. However, as noted by Mailath et al.Mailath et al.

(20172017), in the analysis of repeated extensive form games it is necessary to consider more

complex responses to deviations.99,1010 In particular, in our setting, it is key that firms punish a

price undercutter in-period by refusing the undercutter’s offers of syndication; to do this, we

must construct a strategy profile that simultaneously punishes a firm that undercuts on price
8Collusive pricing in our setting is driven by the role of syndication in efficient production, rather than

simply by our baseline model’s assumption that industry capacity is fixed and thus each firm’s productive
capacity decreases as the number of firms increases. The assumption of fixed industry capacity reflects
conditions of the market for IPOs (see Section 2.12.1). However, if each firm’s productive capacity does not vary
with the number of firms, prices still do not fall to the marginal cost of production, even as the number of
firms grows large; indeed, markups may increase as the number of firms grows (see Section 3.43.4).

9It is not sufficient to consider the repeated version of the reduced normal form game, as the equilibria of
that game will not necessarily correspond to subgame-perfect equilibria of the original repeated extensive
form game.

10Nocke and WhiteNocke and White (20072007) were the first to use the theory of repeated extensive form games to study
collusion, showing that vertical mergers can facilitate collusion under certain circumstances. Byford and GansByford and Gans
(20142014) consider collusion via market segmentation by considering a repeated extensive form game with
market segment entry decisions followed by production decisions; however, they restrict attention to a class
of equilibria in which agents’ decisions regarding production can not depend on past play, eliminating the
extensive-form considerations which are central to our work here. See also the work of Atakan and EkmekciAtakan and Ekmekci
(20112011), who consider how reputation may be built in a repeated extensive form game with initial uncertainty
about one player’s type. Subsequent to the current paper, Hatfield et al.Hatfield et al. (2019a2019a) used a repeated extensive
form game approach to evaluate the scope for collusion in brokered markets such as real estate agency.
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and rewards firms that refuse to join a price undercutter’s syndicate.1111,1212

Our baseline model considers the case of symmetric firms; we then extend our results to

markets with heterogeneous firms. As in the case with symmetric firms, we find that hetero-

geneous firms can collude even when the market is very fragmented. Indeed, heterogeneity

itself can increase firms’ ability to collude. Moreover, the entry of small firms enhances the

scope for collusion in markets with syndication, again counter to standard results in the

theory of industrial organization.1313

Whether spreads on IPOs are set in a competitive or collusive manner has been debated

in the finance literature since Chen and RitterChen and Ritter (20002000) first documented the clustering of

IPO spreads at 7%.1414 Abrahamson et al.Abrahamson et al. (20112011) documented that the spreads for IPOs are

significantly higher in the United States than in Europe, and cited this as evidence that

pricing in the U.S. underwriting market is collusive; Lyandres et al.Lyandres et al. (20162016) also provided

empirical results consistent with implicit collusion. Kang and LoweryKang and Lowery (20142014) presented and

estimated a formal model of why collusion would lead to the observed clustering on spreads,

using insights on collusive behavior from Athey et al.Athey et al. (20042004);1515 moreover, while spreads
11To our knowledge, we are the first to model syndication, i.e., subcontracting, in a repeated extensive

form game. There is, however, a large literature on horizontal subcontracting in the context of one-shot
interactions, starting with the work of Kamien et al.Kamien et al. (19891989); see also the work by, among others, SpiegelSpiegel
(19931993) and Shy and StenbackaShy and Stenbacka (20032003).

12Brock and ScheinkmanBrock and Scheinkman (19851985) consider an unrelated model of Bertrand competition with capacity
constraints. In that model, the stage game is a normal form game in which firms announce prices, with the
lowest-priced firm making sales to the limit of its capacity before the next-lowest-priced firm makes sales,
and so on. The highest sustainable price may be non-monotonic in the number of firms, as adding a firm
makes the stage-game Nash equilibrium outcome less profitable for all firms (in addition to the usual effect
that adding a firm reduces the profits to each colluding firm by dividing the profits of collusion among one
more participant). (We also note that Brock and ScheinkmanBrock and Scheinkman (19851985) restrict their analysis to punishment
strategies that are stage-game Nash equilibria, which are not necessarily optimal.)

The Brock and ScheinkmanBrock and Scheinkman (19851985) model is fundamentally different from ours: In their model, firms only
interact in one step, in which they compete, while in ours firms also collaborate through a second, post-pricing
step via the syndication process. Because of the syndication process in our model, there always exists a
zero-profit (subgame perfect) Nash reversion equilibrium of the stage game; thus, the fundamental driver
of their result—that the highest sustainable price can be non-monotonic in industry concentration—is not
present in our model.

13Both RosenthalRosenthal (19801980) and Chen and RiordanChen and Riordan (20082008) also consider models in which entry can increase
prices; however, entry can increase prices in their settings for very different reasons than those examined here.

14The Department of Justice has also raised concerns about whether IPO spreads are anticompetitive,
leading to a multi-year investigation starting in the late 1990s (Wall Street JournalWall Street Journal, 20012001).

15Kang and LoweryKang and Lowery’s work also helps to explain why, under collusion, spreads may not change with IPO
size or changes over time in the cost of performing an IPO.
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are constant up to a threshold of approximately $100 million, they decline for the largest

IPOs in a manner consistent with the model of Rotemberg and SalonerRotemberg and Saloner (19861986). By contrast,

HansenHansen (20012001) claims that the clustering of IPO spreads is likely to be the result of efficient

contracting, documenting the apparent relative ease of entry and lack of concentration in

the market. Moreover, TorstilaTorstila (20032003) documents the clustering of spreads at lower levels in

countries other than the United States, arguing that this provides evidence that clustering

does not imply collusive behavior. Our work can help reconcile the apparently conflicting

evidence: we show that collusion in IPO markets is possible despite—and in fact may be

facilitated by—low levels of market concentration.

There also is a related debate over whether the pricing of the IPO securities themselves is

collusive. IPO shares generally gain about 15% on their first day of public trading, suggesting

that issuers are “leaving money on the table” (Loughran and RitterLoughran and Ritter, 20042004). Some authors ar-

gue that underpricing is a means for underwriters to extract rents from issuers—likely a feature

of an uncompetitive market (Biais et al.Biais et al., 20022002; Cliff and DenisCliff and Denis, 20042004; Loughran and RitterLoughran and Ritter,

20042004; Liu and RitterLiu and Ritter, 20112011; Kang and LoweryKang and Lowery, 20142014). On the other hand, some argue that

issuers may desire underpricing, and thus underpricing can occur even when underwriters

compete aggressively (RockRock, 19861986; Allen and FaulhaberAllen and Faulhaber, 19891989; Benveniste and SpindtBenveniste and Spindt, 19891989;

ChemmanurChemmanur, 19931993; Brennan and FranksBrennan and Franks, 19971997; Stoughton and ZechnerStoughton and Zechner, 19981998; Lowry and ShuLowry and Shu,

20022002; Smart and ZutterSmart and Zutter, 20032003). While our work does not address the issue of underpricing

directly, it does show that underwriters could collude in the market for IPOs, even though—or

even because—the market is highly fragmented.

Beyond IPOs, many other financial markets are syndicated, including the markets for debt,

reinsurance, and private equity. Motivated by our work, Cai et al.Cai et al. (20182018) investigated the

effects of market concentration on interest rates (i.e., prices) in the syndicated loan market;

consistent with our theory, they found robust evidence that prices are indeed U-shaped in

market concentration.

Meanwhile, numerous lawsuits have alleged that private equity firms used strategies
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similar to those that we describe here to support collusion;1616 these lawsuits1717 claim that firms

“monitored compliance through. . . detailed ‘scorecards’ that listed the deals they worked on,

who else was involved in those deals, and the resulting favors that they owed others and that

others owed them.”1818 Indeed, Officer et al.Officer et al. (20102010) found that shareholders in firms bought

out through leveraged buyouts (LBOs) received approximately 40% lower premiums in club

deals (i.e., syndicated LBOs) compared to sole-sponsored LBOs. The plaintiffs observed that

“KKR bragged to its investors in 2005: ‘Gone are the days when buy-out firms fought each

other with the ferocity of cornered cats to win a deal.’” Moreover, the plaintiffs argued that

“Every time a Defendant’s club signaled that it had a proprietary deal . . . the other Defendants

refused to submit a better offer—even when . . . this enabled [an acquiring] club to purchase [a

target] at such a low price, it amounted to [in the words of one Defendant] ‘highway robbery.’”

Plaintiffs offered evidence that defendants refused to work with outsiders (i.e., potential

entrants and spoilers of collusion) who wanted to challenge allegedly collusive deals. The

plaintiffs also argued that in exchange “for not competing for large LBOs,” defendants were

“offered an invitation to participate in that LBO” or a future LBO “with its co-conspirators”

explicitly “as a reward.” Indeed, firms “invited into a current deal understood that they were

required to invite their co-conspirators into a subsequent deal.”1919,2020

There have also been a number of instances of collusive bidding behavior facilitated

by ex post horizontal subcontracting. For example, a group of companies and individuals

were convicted of criminal antitrust violations for conspiring to rig the bidding for highway

construction contracts in New York; one of the ways they maintained this conspiracy was
16This behavior was also the subject of a multi-year criminal investigation by the Department of Justice

(Rosener and MainaliRosener and Mainali, 20132013).
17All of the quotes in this paragraph are taken from the Fifth Amended Complaint in Dahl et al. v. Bain

Capital Partners, LLC, et al., 937 F. Supp. 2d 119 (D. Mass. 2013).
18For example, in one “instance, when Apollo co-founder Leon Black expressed his anger at Goldman Sachs’

‘lack of reciprocity’ for two deals he had invited Goldman Sachs to join, Goldman Sachs executives reviewed
their scorecard and readily agreed that they ‘truly need[ed] to involve [Apollo] soon in a principal deal [via
syndication].’”

19These punishments clearly rely on the syndicated nature of the industry and play a similar role to the
punishments we describe in our model.

20Following seven years of litigation, defendants settled the aforementioned lawsuit for approximately $600
million (DezemberDezember, 20142014).
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by having winning bidders award lucrative subcontracts to the losing bidders. For instance,

one winning bidder subcontracted construction of one mile of a thirteen-mile highway to a

competitor at a price that was almost double the competitor’s usual bid for the subcontract

work.2121 In another example, firms performing concrete work on various nuclear facilities

conspired to rig bids, and to compensate the non-winning bidders via subcontracts for work

and materials.2222 Finally, the firms bidding on construction of Cairo’s sewage system engaged

in similar conduct, leading to multiple criminal and civil suits.2323

The remainder of the paper is organized as follows: Section 22 introduces our model of

markets with syndicated production; Section 33 characterizes the highest price sustainable

via collusion in such markets. Section 44 considers how the highest sustainable price depends

on market conditions. Section 55 extends the model to allow for contracting over production

shares. Section 66 examines the impact of firm heterogeneity and market entry on the highest

sustainable price. Section 77 concludes. Proofs and extensions of our main results are presented

in Appendices AA–DD.

2 Model

We introduce a model of price competition in markets with syndication. There is a finite set

of long-lived identical firms F and an infinite sequence of short-lived identical buyers {bt}t∈N;

we let ϕ ≡ 1
|F | be the market concentration. Time is discrete and infinite; firms discount the

future at the rate δ ∈ (0, 1).

Each firm f is endowed with a production technology with a cost function c(s,m), where

s is the quantity of production done by firm f and m is the mass of the productive capacity

controlled by firm f . We assume that the cost function is strictly increasing and strictly

convex in the production done by the firm and strictly decreasing and strictly convex in
21See New York v. Hendrickson Brothers, Inc., 840 F.2d 1065 (2d Cir. 1988).
22See United States v. Inryco, Inc., 642 F.2d 290 (9th Cir. 1981).
23See Elemary v. Holzmann, 533 F. Supp. 2d 116 (D.C. 2008), United States v. Anderson, 326 F.3d 1319

(11th Cir. 2003), and Miller v. Holzmann, 563 F. Supp. 2d 54 (D.C. 2008). The cases concerned U.S. aid to
Egypt used for the construction of a sewage system there.
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the productive capacity of the firm.2424 We also assume that a firm which does not engage in

production incurs no costs, i.e., c(0,m) = 0 for all m, and that production becomes arbitrarily

costly as the productive capacity of the firm goes to 0, i.e., limm→0 c(s,m) ≥ ∞ for all s > 0.

Finally, we assume that the cost function is homogeneous of degree 1.2525

We normalize the total productive capacity in the economy at k = 1;2626 in this section, we

assume that the total productive capacity is evenly divided among the firms, so that the cost

of producing s for any one firm is c(s, ϕ).

In each period t, the firms and the buyer bt play the following extensive-form stage game:

Step 1: Each firm f ∈ F simultaneously makes a price offer pft ∈ [0,∞). All offers to the

buyer are immediately and publicly observed.2727

Step 2: The buyer accepts at most one offer; this action is immediately and publicly observed.

If no offer is accepted, the stage game ends.

Step 3: If the offer from some firm is accepted, then that firm becomes the syndicate leader,

`. Firm ` then simultaneously2828 offers each non-leader firm g ∈ F r {`} a fee wgt .2929

These offers are immediately and publicly observed.3030

24This cost function assumption is equivalent to assuming that the industry consists of production units,
each with convex production costs, with the production units divided evenly among firms.

25This last assumption is stronger than is generally necessary for our analysis but it greatly simplifies our
presentation here. It is enough for our results that, as we proportionately increase the production required
and the productive capacity, the cost function increases at a slower rate, i.e.,

∂2c(s, sm)
∂s2 ≤ 0

for all s,m > 0; in the homogeneous case, this expression holds with equality. Economically, this implies that
larger firms are weakly more efficient, in the sense that one firm with productive capacity sm can complete a
production share s at a (weakly) lower cost than multiple firms with combined productive capacity sm.

26We consider the effects of changing the amount of productive capacity k in Section 44.
27Our analysis would be unchanged if we instead assumed that only the winning bid and bidder was publicly

observed, as the strategies we construct to support the highest sustainable price given in Theorem 11 do not
depend on the bids of the non-winning bidders. Moreover, if firms have access to a public randomization
device, it is not necessary for our analysis that the winning bid be observable.

28The assumption of simultaneous offers simplifies the analysis; our results, however, are robust to an
alternative specification of the game in which the syndicate leader makes sequential offers, which are accepted
or rejected as they are received.

29In Section 55, we consider a “complete contracting” version of the model in which a syndicate offer specifies
a firm’s production share as well as its fee.

30An alternative setting in which syndication offers are not publicly observable is studied in further work
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Step 4: Each firm g ∈ F r {`} either accepts or rejects the fee wgt from `. We call the set of

firms that accept `’s offer, along with the firm `, the syndicate Gt. At the end of the

period, all firms observe the syndicate.3131

The buyer bt has a fixed value of v > c(1, 1) for the finished product.3232 Thus, the payoff

to the buyer bt is v − pft if he accepts the price offer from firm f and 0 if he does not accept

any offer.

If the buyer bt does not accept any offer, then each firm f ∈ F obtains a payoff of 0.

If firm ` becomes the syndicate leader (i.e., the buyer bt accepts the offer of firm `), then

production is performed efficiently ex post by the members of `’s syndicate, and so each

member of the syndicate performs an equal share of production. Thus, the stage game payoffs

for the firms after a successful offer to the buyer from firm ` are as follows:

1. The payoff for ` is p`t − c
(

1
|Gt| , ϕ

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by the buyer less

both the cost of `’s production and the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c
(

1
|Gt| , ϕ

)
, i.e., the fee paid to g less the cost of g’s

production.

3. The payoff for h ∈ F rGt is 0.

2.1 The IPO Industry Interpretation of the Model

It may be helpful to ground our model in a real-world example to illustrate the economic

content of our assumptions. Consider the IPO process: After a would-be issuer decides to

have an IPO, underwriting firms compete in a “bake-off” to be the lead underwriter,3333 or

syndicate leader, for the IPO in a process analogous to the bidding in Steps 1 and 2 of our

(Hatfield et al.Hatfield et al., 2019b2019b).
31Consequently, all firms know which syndication offers were accepted.
32We assume that v > c(1, 1) to avoid the trivial case where no trade is efficient.
33In some cases, large IPOs may in fact have multiple lead underwriters who may be selected at the bake-off

stage.
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game. The winning spread for a given IPO is publicly observable and is easily available to

market participants (e.g., in the commonly used Securities Data Company (SDC) database).

After being selected, the lead underwriter recruits other banks—many or all of which may

have competed to be lead underwriter—to help place the IPO shares, similar to Steps 3 and 4

of our game.3434 Each underwriter—both the lead underwriter and other syndicate members—

“places” shares with important investors with which it has an ongoing relationship.3535 The

placement process corresponds to the production process in our model; each underwriter’s

“book” of investors corresponds to that firm’s productive capacity in our model. As investors

are risk-averse and want diversified portfolios, it is more costly for an underwriter to place a

large number of shares of one issuer with its set of investors than for a large set of underwriters

to distribute those shares among all of their investors; this corresponds to our assumption

that costs are convex in the amount of production performed. Similarly, a well-functioning

syndicate, operating with access to the investor books of all of its members, would be expected

to have the same ability to place shares with investors as a single firm operating with the

same combined book of business; this matches our assumption that the cost function is

homogeneous of degree 1. Total productive capacity corresponds to the set of institutional

investors; this resembles our model, in which total productive capacity is unchanging with

market structure.3636 However, in Section 66, we consider the possibility of entry by a new

investment bank that brings new productive capacity to the market. We find that the effect

of an entrant depends on that entrant’s size: a sufficiently small entrant increases the scope

for collusion, while a sufficiently large entrant may decrease it.
34The SDC database documents 4,576 U.S. IPOs conducted between 1970 and 2014 in which the issuer

sold between $20 and $100 million worth of stock. Of these, 4,438—97%—were syndicated.
35Syndicate membership is also registered publicly and may be found in the SDC database; the syndicate

may also be listed on the IPO “tombstone” used to advertise and commemorate the IPO.
36To more completely capture our institutional setting, we could extend the model to include a single

time-0 “investor recruitment stage” in which firms compete to form links with institutional investors. It is
straightforward to show that the extended game has an equilibrium which produces symmetric, collusive link
formation and delivers the same price and the same profits as the equilibrium (of the original game) that
provides the highest sustainable price given in Theorem 11.
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3 Optimal Collusion

We now characterize the highest price sustainable via collusion in markets with syndication.

A price p is sustainable if there exists a subgame perfect Nash equilibrium in which, along

the equilibrium path, the buyer accepts a price offer of p in every period.

When the market is very concentrated, i.e., there are a small number of firms, any price

(less than or equal to v) can be sustained by “grim trigger” strategies in which deviations from

the collusive price are punished in subsequent periods by play in which every firm obtains

0 profits. This type of equilibrium is standard in the analysis of markets under Bertrand

competition; in such markets, however, once there are enough firms in the market, no price

above the cost of production can be sustained.

In markets with syndication, as in Bertrand competition markets, grim trigger strategies

lose their bite as the number of firms in the market grows. However, unlike in the standard

Bertrand competition model, markets with syndication admit a second way to maintain

collusion: if a firm becomes a price deviator—i.e., if a firm bids lower than the price mandated

by the collusive equilibrium—other firms can punish that firm “in period” by refusing offers

of syndication. This raises the cost of production for that firm, as it must now complete

the project on its own instead of engaging in (more efficient) syndicated production. To

incentivize firms not to join the price deviator’s syndicate, we need to promise them rewards in

future periods; reverting to “perfect competition” after a price deviation does not accomplish

this goal, as that would make all firms earn 0 profits in all future periods. Thus, reverting to

perfect competition in periods after a price deviation is not the best continuation plan to

sustain collusion in our setting. Instead, an optimal continuation plan should simultaneously

reward firms for refusing offers of syndication while punishing the price deviator. In particular,

the higher the price deviator’s syndication offer to a firm g, the higher the continuation payoff

needed to induce g to reject the offer of syndication; “the reward should fit the temptation,”

as highlighted by Mailath et al.Mailath et al. (20172017). It is also important to punish a firm if it accepts an

offer of syndication from the deviating firm. We do revert to perfect competition if any firm
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accepts a price deviator’s offer of syndication; this punishes both the initial deviator and any

firm which joins the syndicate as harshly as possible. The strategies just described make

recruiting a syndicate sufficiently costly that lone production is a more attractive option than

recruiting a syndicate.3737

Unlike grim trigger strategies, syndicate punishment strategies become more powerful as

the market becomes less concentrated, as completing the project alone becomes increasingly

expensive. Consequently, the preceding observations imply that, in general, the highest

sustainable price is not monotone in market concentration: At high levels of market concen-

tration, firms can collude at the monopoly price, as in the standard Bertrand competition

model. When market concentration is sufficiently low, syndicate punishments again enable

firms to collude at the monopoly price. However, at intermediate levels of market concentra-

tion, there are no subgame-perfect Nash equilibrium strategies that sustain the monopoly

price.3838

Our main result characterizes the highest sustainable price.

Theorem 1. For δ ≥ 1
2 , the highest sustainable price, p?, is given by

p? =


v ϕ ∈ [1− δ, 1]

min
{

(1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ , v

}
ϕ ∈ (0, 1− δ).

Moreover, either p? is strictly single-troughed (and thus non-monotonic) in ϕ or p? = v

everywhere. Finally, limϕ→0 p
? = v.3939

Figure 11 plots the highest sustainable price p? as a function of ϕ. We call an equilibrium
37Cai et al.Cai et al. (20182018) noted that there is anecdotal evidence for syndication “blacklists” in the syndicated loan

market, which suggests that the types of punishment strategies we construct here are employed in practice.
38The syndication structure is essential for our result that pricing is non-monotonic in market concentration;

a model in which the buyer directly contracts with individual firms to complete parts of a larger project
exhibits pricing that is (weakly) decreasing in the number of firms. Thus, our non-monotonicity result is
not driven exclusively by the fact that firm capacity is decreasing as the number of firms increases: see
Section 3.43.4.

39We could also consider non-stationary equilibria, i.e., equilibria in which the prices offered to the buyers
vary with time. However, in any such equilibrium, the offered price will never be above p?.
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Figure 1: The highest sustainable price p? as a function of market concentration ϕ. Here,
c(s,m) = s2

m
, δ = 3

4 , and the maximum price that the buyer is willing to pay is v = 25. For
sufficiently concentrated industries, the monopoly price can be sustained through grim trigger
strategies. The highest sustainable price is lower for intermediate industry concentration
levels, but as market concentration goes to 0 the highest sustainable price reaches the buyer’s
value v. The cost of efficient production (i.e., when the syndicate includes all firms) is 1 for
all market concentrations ϕ.

in which, along the equilibrium path, the buyer accepts an offer of the highest sustainable

price p? and firms engage in efficient joint production a maximally collusive equilibrium. In a

maximally collusive equilibrium, the combined per-period profits for all firms are given by

p? − c(1, 1). A maximally collusive equilibrium maximizes industry profits; the buyer accepts

the highest sustainable price, and efficient joint production ensures that costs are as low as

possible.

We now describe an equilibrium that achieves the highest sustainable price p? stated in

Theorem 11; we give full details of the construction in Appendix AA. Our equilibrium relies

on two different punishment phases: First, we introduce a collusive punishment phase to

incentivize firms not to join the syndicate of a price deviator, thus ensuring that no firm

deviates on price. Meanwhile, we have a traditional Bertrand reversion phase, which is

used to enforce prescribed behavior in the syndicate formation stage, both on and off the

equilibrium path.
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3.1 Bertrand Reversion Nash Equilibrium

We first describe the Bertrand reversion Nash equilibrium of the stage game, i.e., the subgame-

perfect equilibrium in which all firms make zero profits and the buyer obtains the good at the

lowest possible cost of production. In this equilibrium, each firm offers a price equal to the

cost of producing the good when every firm participates in the syndicate. After the buyer

chooses a firm to be the syndicate leader, that firm offers each non-leading firm a fee equal

to its cost of production (assuming all syndication offers are accepted); each non-leading firm

accepts this offer. Under the behavior just described, each firm in the syndicate other than

the syndicate leader breaks even. Moreover, the syndicate leader also breaks even because

the buyer pays exactly the cost of efficient production, the syndicate leader then pays each

syndicate member exactly that member’s production costs, and thus the payment retained

by the syndicate leader is exactly its own cost of production.

Our first result shows that an equilibrium of the form just described exists and delivers

each firm its lowest individually rational payoff.

Proposition 1. There exists a subgame-perfect Nash equilibrium of the stage game, i.e., the

Bertrand reversion Nash equilibrium, in which each firm obtains a payoff of 0, its lowest

individually rational payoff.

In standard repeated normal form games, reverting to the stage game equilibrium described

in Proposition 11 would be sufficient to punish any off-equilibrium behavior. That is, the

Bertrand reversion Nash equilibrium can be used to implement the simple penal codes of

AbreuAbreu (19861986). However, as noted by Mailath et al.Mailath et al. (20172017), simple penal codes are insufficient

to characterize the equilibrium payoffs in repeated extensive form games. Even so, the

Bertrand reversion Nash equilibrium is a key component of the equilibrium we use to support

the highest sustainable price.
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3.2 Maintaining Collusion with Grim Trigger Strategies When the

Market Is Concentrated

We first show that the monopoly price v is sustainable when firms are patient and the number

of firms is sufficiently small. Moreover, collusion can then be sustained via “grim trigger”

strategies: after a deviation in either step of the stage game, play in all subsequent periods

reverts to the Bertrand reversion Nash equilibrium described in Section 3.13.1.

Proposition 2. If the discount factor is sufficiently high, i.e., δ ≥ 1− ϕ, then there exists

a subgame-perfect Nash equilibrium in which each firm offers the monopoly price in every

period, i.e., pft = v for any v ≥ c(1, 1), for all f ∈ F and for all t.

To prove Proposition 22, we construct an equilibrium in which each firm bids the monopoly

price v in every period; each buyer then accepts one such offer (choosing each offer with

equal probability). If the offer from firm ` is accepted, ` offers each non-leading firm a fee

equal to its cost of production and each non-leading firm accepts this offer. If a firm offers a

lower price in the first step, i.e., becomes a price deviator, the buyer chooses this lower price

offer and syndication proceeds as if there were no price deviation; play then reverts to the

Bertrand reversion Nash equilibrium described in Section 3.13.1 for subsequent periods.

Thus, in each period, the syndicate leader has profits of v − c(1, 1) while every other firm

has 0 profits; hence, the expected discounted profits for a firm from following its equilibrium

strategy is
∞∑
t=0

δtϕ(v − c(1, 1)) = ϕ

1− δ (v − c(1, 1)).

Meanwhile, the upper bound on profits from offering an infinitesimally lower price is

v − c(1, 1).

Thus, we can maintain monopoly prices using grim trigger strategies so long as δ > 1− ϕ.

Proposition 22 is our setting’s analogue to the familiar result in models of Bertrand competition
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that collusion at any price can be maintained by grim trigger strategies when the industry is

sufficiently concentrated. However, in the standard model of Bertrand competition, collusion

cannot be maintained at any price when δ < 1−ϕ; in the next section, we show that collusion

can be maintained in our setting for any δ ≥ 1
2 .

3.3 Maintaining Collusion with Syndicate Punishments

In this section, we first provide an intuitive description of an equilibrium that sustains the

price p? defined in Theorem 11 and then explain why no subgame-perfect Nash equilibrium

can sustain a price higher than p?. The key idea is to construct strategies that exploit

syndicate boycotting to enforce higher prices. Play begins in the cooperation phase, in which

each firm offers the same price p? and a firm, upon having its offer accepted, engages in

efficient syndication. Play continues in the cooperation phase so long as no one deviates.

If some firm deviates in the first step—i.e., offers a lower price to the buyer in order to

guarantee that it wins the bid—we call such a firm a price deviator. Because of the efficiency

gains from syndicated production, the price deviator will wish to induce the non-leading

firms to join its syndicate, and thus will be willing to offer each firm a fee above its cost

of production as an inducement. By the same token, if the non-leading firms refuse to join

the price deviator’s coalition, that will raise the deviator’s cost of production, punishing

the price deviator in-period, which discourages firms from deviating on price in the first

place. Thus, the optimal collusive plan promises future-period rewards to non-leading firms

that reject above-cost syndication offers from the price deviator; for this reason, Bertrand

reversion after a price deviation is not necessarily the best continuation plan to sustain

collusion. Moreover, to make rejecting the price deviator’s syndication offer as attractive as

possible, it is also important to punish a firm if it joins a price deviator’s syndicate. To do

so, we do use Bertrand reversion, as it punishes both the initial deviator and any firm that

joins the syndicate as harshly as possible. Thus, whenever any firm deviates by accepting a

price deviator’s syndication offer—or rejecting a non-price deviator’s equilibrium syndication
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offer—play enters the Bertrand reversion phase, in which firms play the Bertrand reversion

Nash equilibrium each period.

After a period in which a firm f is a price deviator, but no firm joins its syndicate, play

enters a collusive punishment phase with continuation values ψ which both punishes the

price deviator f and rewards those firms that refused to join f ’s syndicate. In the collusive

punishment phase, each firm offers the same collusive punishment price q to the buyer.

The higher that q is, the higher total industry profits will be, permitting larger rewards to

firms that rejected f ’s syndication offers. At the same time, behavior during a collusive

punishment phase must itself be subgame-perfect; this imposes a constraint on how high q

can be.4040 If each firm offers collusive punishment price q, then the winning bidder efficiently

syndicates production; in so doing, it offers each non-leading firm g a fee equal to its assigned

continuation value, ψg, plus g’s production cost, c(ϕ, ϕ). Finally, if any firm deviates from

equilibrium play with respect to accepting or rejecting offers of syndication, play enters the

Bertrand reversion phase, in which firms play the Bertrand reversion Nash equilibrium each

period.

The continuation payoff ψg to a firm g other than the price deviator during a collusive

punishment phase depends on the syndication offer made to g by the price deviator f . In

particular, “the reward should fit the temptation” (Mailath et al.Mailath et al., 20172017)—the larger the fee

offered to the firm by the price deviator, the greater the continuation payoff offered to that

firm to induce it to reject the offer of syndication.4141 By making future play conditional on

offers of syndication, firms are incentivized to punish price deviators in-period by refusing

to join their syndicates—the more f offers g to join the syndicate, the more g receives in

future periods; this mechanism deters non-deviators from accepting any syndication offer

that the price-deviator would rationally make. That, in turn, reduces the incentive for firms
40If the price q is too high, then f or another firm will wish to price-deviate in this phase, and so the

collusive punishment phase will not be subgame-perfect.
41The naked exclusion game of Section 3.2 of Mailath et al.Mailath et al. (20172017) is a simple example of a repeated

extensive form game for which fitting the reward to the temptation lowers the discount factor necessary to
sustain certain outcomes (relative to using “grim trigger”-like strategies).
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to deviate on price, since each firm is aware that if it does so it will have to engage in lone

production. Thus, the threshold for the highest sustainable price is set by the constraint that

no firm can profitably deviate on price and engage in lone production. Since lone production

becomes costlier as the market becomes more fragmented, reducing market concentration

may make it easier to sustain collusion at a given price.

More formally, there are three phases of equilibrium play:

1. In the cooperation phase,

• every firm submits the same bid p = p?,

• the short-lived buyer accepts one such offer of p?, choosing each offer with equal

probability,

• every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) to every

non-leading firm g ∈ F r {`} to join the syndicate, and

• every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

• every firm submits the same bid q = min{c(1, ϕ), v},

• the short-lived buyer accepts one such offer of q, choosing each offer with equal

probability,

• every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) + ψg to every

non-leading firm g ∈ F r {`} to join the syndicate, and

• every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, firms play the Bertrand reversion Nash equilibrium.
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Figure 2: Automaton representation of the class of equilibria we consider. Labeled nodes are
phases; unlabeled nodes are intermediate phases, which represent the branching of transitions
based on behavior in the second step of the game.

We now describe how play transitions between equilibrium phases; the full phase diagram

is pictured in Figure 22. In the cooperation and collusive punishment phases, so long as players

adhere to their prescribed equilibrium strategies, play continues in the cooperation phase.

If some firm f offers a lower price in the cooperation or a collusive punishment phase, or

makes syndication offers inconsistent with equilibrium play, then future play depends on the

syndication offers that are made:

• If the price deviator’s syndication offers are so low that every firm expects to lose money

this period were it to accept its syndication offer, then each firm rejects its syndication

offer and we proceed to the Bertrand reversion phase (regardless of which syndication

offers are accepted); we call this case uniformly low offers.

• If the price deviator’s syndication offers are above the cost of production but are still

not too high, then play proceeds to a collusive punishment phase if and only if every

firm rejects the price deviator’s syndication offers—how much each firm receives during
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the collusive punishment phase depends on the syndication offers made by the price

deviator. (If any firm accepts its syndication offer, play proceeds to the Bertrand

reversion phase.) We call this case insufficient offers; roughly, offers are insufficient if

they do not compensate the other firms for the difference in future profits between the

collusive punishment and Bertrand reversion phases.

• If the price deviator’s syndication offers are great enough that dynamic rewards are not

sufficient to deter firms from accepting offers of syndication, then we simply proceed to

the Bertrand reversion phase regardless of which syndication offers are accepted. We

call this case sufficient offers.4242

It is immediate that the conjectured equilibrium delivers a price of p? in each period. We

now explain why the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

It is straightforward that the prescribed actions regarding accepting or rejecting syndication

offers are best responses after equilibrium play and in the uniformly low and sufficient offers

cases. It is only in the case of insufficient offers that (non-price-deviating) firms are required

to accept/reject syndication offers in a way that does not maximize in-period profits. In the

insufficient offers case, total future industry profits in the collusive punishment phase are the

discounted value of the collusive punishment price less the efficient cost of production, and

these are distributed in such a way that each firm finds it incentive compatible to reject its

offer of syndication.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally, as bt always chooses one of

the lowest price offers less than or equal to its reservation price v.
42See Appendix A.3A.3 for a formal characterization of when offers are uniformly low, insufficient, and sufficient.

21



Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We begin by verifying that during a collusive punishment phase, no firm has an incentive

to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication

offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate, and

f will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is at

most q − c(1, ϕ) ≤ c(1, ϕ)− c(1, ϕ) = 0 as q = min{v, c(1, ϕ)}. Moreover, firm f ’s profits in

every future period will be 0, as play will enter a new collusive punishment phase in which

firm f obtains 0 profits each period. Therefore, firm f ’s total profits from making uniformly

low or insufficient offers are at most 0. On the other hand, firm f enjoys a non-negative

continuation value by not deviating; consequently, it is not profitable for f to deviate and

make uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during a collusive punishment phase. Offers are only sufficient if

they compensate the other firms for future play switching to the Bertrand reversion phase

instead of a collusive punishment phase. Thus, if the net present value of future profits in

the collusive punishment phase is large enough—which is guaranteed by our assumption

that δ ≥ 1
2—then the cost of sufficient offers is high enough that a firm would be better off

engaging in lone production than making sufficient offers.4343

Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that during the cooperation phase, no firm has an incentive to price-deviate

or, if selected as the syndicate leader, not make the prescribed syndication offers. First,

consider the payoff to a deviating firm f that is selected as syndicate leader and then makes

uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive a

payment of at most p? from the buyer. Thus, firm f ’s profit in-period is at most p? − c(1, ϕ).
43For further details on why we require δ ≥ 1

2 , see Appendix A.3.3A.3.3.
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Moreover, firm f ’s profits in every future period will be 0. Therefore, firm f ’s total profits

from making uniformly low or insufficient offers are at most p? − c(1, ϕ). On the other hand,

firm f enjoys profits each period of ϕ(p? − c(1, 1)) by not deviating. Consequently, it is not

profitable for f to deviate and make uniformly low or insufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, ϕ),

which holds as p? ≤ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ by construction. The reasoning for why making sufficient

offers is non-optimal is the same as in the analysis of the collusive punishment phase above.

Maximality of p?

Having shown that p? is sustainable in equilibrium, all that remains is proving that no higher

price can be sustained. It is straightforward that no price higher than v can be sustained,

since buyers would reject such price offers. Meanwhile, when p? < v, the price p? is exactly the

highest price at which no firm wishes to deviate within-period and engage in lone production.

Thus if the buyer were to accept an offer of p > p? each period, at least one firm is not

playing a best response: Any firm f receiving its fair share (or less) of industry profits at

price p could offer a price slightly less than p (which would induce the buyer to choose f) and

engage in lone production; by the construction of p?, this would be profitable for f . Thus we

see that p? is indeed the highest sustainable price.

3.4 Fixed Firm Capacity vs. Fixed Industry Capacity

Our result that the maximally collusive price may be decreasing in market concentration (and

hence, increasing in the number of firms) relies on the assumption that per-firm productive

capacity is decreasing in the number of firms; in many syndicated markets, such as the market

for IPOs, this assumption seems natural.4444 In other syndicated markets, new entrants may
44For instance, Khanna et al.Khanna et al. (20082008) argued that IPOs require specialized labor, and the supply of that

labor within the industry is essentially fixed. Furthermore, IPO shares are primarily purchased by institutional

23



bring new capacity.

An alternative specification of our model would thus assign each firm a fixed capacity

regardless of the number of firms present. We show in Appendix CC that with fixed firm

capacity, the highest sustainable price becomes decreasing in the number of firms, but

nevertheless remains bounded above the marginal cost of efficient production. Moreover,

with fixed firm capacity, industry profits may be increasing in the number of firms. Just as

in our main model, the necessity of syndication for efficient production pushes prices above

competitive levels.

Similarly, we could consider a model in which the cost of lone production increases as the

number of firms grows, but approaches a finite limit. In that case, the maximally collusive

price again remains bounded above the marginal cost of efficient production even as the

number of firms grows large.4545

3.5 Costs of Syndicate Formation

In our model, efficient production within each period requires that all firms participate in the

syndicate. In practice, syndicates typically do not include all firms in an industry; for instance,

IPO underwriting syndicates typically do not include all active IPO underwriters. A natural

extension of our model would be to include a “coordination cost” that is increasing and

weakly convex in the number of firms; with these coordination costs, the efficient syndicate

would no longer necessarily include all firms. Nevertheless, in this setting, firms would still

be able to maintain high prices even as the number of firms grows large; the wedge between

the cost of efficient (syndicated) production and the cost of lone production would still allow

investors (Jenkinson et al.Jenkinson et al., 20182018), suggesting a relatively fixed pool of capital available to IPO underwriters.
45However, while the maximally collusive price is always weakly decreasing in the number of firms with

fixed firm capacity, this may not be true in the more general setting where the cost of lone production
approaches a finite limit.
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firms to punish price-deviators in-period, thus enabling collusion.4646,4747

4 Prices, Profits, and Capacity

We now consider the question of how the highest sustainable price and industry profits in a

maximally collusive equilibrium vary as a function of the productive capacity k. In standard

industrial organization models, industry profits are increasing in the productive efficiency of

firms—in our setting, however, this is not necessarily the case. Indeed, for a large class of cost

functions, industry profits in our setting are strictly decreasing in the productive capacity k.

Proposition 3. If c(s, ϕ) − c(s, 1) is convex in s for all ϕ ∈ (0, 1 − δ),4848 then the highest

sustainable price p? and industry profits in a maximally collusive equilibrium are decreasing

in productive capacity k.

Increasing the productive capacity affects the highest sustainable price, p?, through two

channels: First, increasing productive capacity lowers the cost of efficient joint production,

making collusion more profitable. But increasing productive capacity also lowers the cost

of lone production, making price deviation and lone production more profitable. As the

sustainability of collusion depends on the relative profitability of these two options,4949 increasing

capacity could potentially make collusion easier or harder to sustain. When the difference

between the cost of lone production (c(s, ϕ)) and the cost of efficient joint production (c(s, 1))

is increasing and convex in the quantity produced (s), the second effect dominates; this makes
46Note that depending on how coordination costs are modeled, it is possible that the optimal syndicate

could involve fewer and fewer firms as the overall number of firms grows; in the limit, this would make
syndicate formation inefficient, causing the wedge between the cost of efficient production and the cost of
lone production to vanish. Then, however, the cost of efficient production approaches ∞ as the number of
firms grows large and so “no-trade” becomes the unique equilibrium.

47If each firm has a fixed capacity, as in Section 3.43.4, then coordination costs would imply a constant optimal
syndicate size; in this case, regardless of the number of firms, there would exist a wedge between the cost
of efficient production and the cost of lone production, which would enable collusive strategies of the type
described here.

48For instance, all cost functions of the form c(s,m) = s
(
s
m

)α, where α > 0, satisfy this condition.
49Recall from our derivation of p? in Section 3.33.3 that p? is chosen so that price-deviating and then engaging

in lone production is unprofitable.
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collusion harder to sustain and thus the highest sustainable price falls as productive capacity

increases.

Even though the highest sustainable price p? falls as productive capacity increases, one

might still intuitively expect that increasing the productive capacity k would enhance industry

profits in a maximally collusive equilibrium. However, as just described, when the difference

between the cost of lone production (c(s, ϕ)) and the cost of efficient joint production (c(s, 1))

is increasing and convex in the quantity produced s, the highest sustainable price p? falls

as productive capacity increases. Moreover, as productive capacity increases, the highest

sustainable price (and thus industry revenues) drops faster than the cost of efficient production.

Thus, industry profits decline as productive capacity increases.

5 Contracting over Production Shares

We now consider an extension of our model in which each syndication offer to a non-leading

firm g specifies not only the fee that g receives from participating, but also the share of

production that g completes. Under this form of contracting, in Step 3 of the extensive form

stage game, the syndicate leader ` offers each other firm g a contract (sgt , wgt ). If g accepts

this syndication offer, it receives a fee of wgt from ` (as before) and completes a production

share sgt . The stage game payoffs (where, as before, the set of firms who accept the offer of

syndication is denoted by Gt) are now as follows:

1. The payoff for ` is p`t − c
(
1−∑g∈Gtr{`} s

g
t , ϕk

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by

the buyer less both the cost of `’s production and the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c(sgt , ϕk), i.e., the fee paid to g less the cost of g’s

production.

3. The payoff for h ∈ F rGt is 0.

Surprisingly, the highest sustainable price is the same as when firms are unable to contract
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over production shares (Theorem 11).

Theorem 2. If syndication offers specify both production shares and fees, then for δ ≥ 1
2 ,

the highest sustainable price is given by p?, as defined in Theorem 11; consequently, either p?

is strictly single-troughed (and thus non-monotonic) in ϕ or p? = v everywhere.

We give a full proof of Theorem 22 in Appendix B.2B.2. To prove that p? is sustainable

when syndication offers specify production shares, we construct an equilibrium that is very

similar to the one we constructed in Section 33. In particular, the equilibrium supporting

Theorem 22 has the same set of phases as in Section 3.33.3 and the circumstances under which

play transitions from one phase to another are comparable.

The sustainability of collusion depends on the relative profitability for each firm of

colluding versus price-deviating and then engaging in lone production. Recall from our

derivation of p? in Section 3.33.3 that p? is chosen so that price-deviating and then engaging in

lone production is unprofitable. Because price-deviating and then engaging in lone production

does not involve multi-firm syndicates, changing the contracting structure between syndicate

leaders and non-leading firms does not affect p? directly.

Changing the contracting structure does make recruiting syndicate members after a price

deviation easier. Thus, we might worry that collusion might not be sustainable because

a different type of deviation would become attractive: price-deviating and then building

a syndicate. However, so long as δ ≥ 1
2 , it is still more costly for a price deviator to

make sufficient offers (and thus recruit a syndicate) than to engage in lone production; see

Appendix B.2B.2 for details.

6 Heterogeneous Firms and Market Entry

Our analysis so far has assumed that firms are homogenous, i.e., that each firm has the same

productive capacity. As we show in Appendix DD, Theorem 22 naturally generalizes to the case

in which firms may have different productive capacities; but now, the share of per-period
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profits allocated to each firm depends on its size. In particular, the maximally collusive

equilibrium allocates profits among firms so that each firm (weakly) prefers its equilibrium

strategy to undercutting on price and engaging in lone production. Accordingly, larger firms

are allocated larger per-period profits than smaller ones, as larger firms have a lower cost of

lone production.

Our analysis in Appendix DD also allows us to consider the effect of market entry: Surpris-

ingly, entry by a firm with a small amount of productive capacity raises (rather than lowers)

the highest sustainable price. The key idea is that a small firm is not able to profitably

undercut on price and engage in lone production as the highest sustainable price will be

below a small firm’s cost of lone production. Thus, the only effect of entry by a small firm

with additional capacity is to increase the amount of productive capacity available to the

syndicate; this makes colluding at any given price more profitable (as efficient production is

now less costly), while having no effect on any existing firm’s payoff from undercutting on

price and engaging in lone production.

7 Conclusion

Our results show that in markets with syndication, classical industrial organization intuitions

are not always valid: Decreasing market concentration can raise prices by strengthening

firms’ abilities to punish a deviator in-period by refusing offers of syndication.5050 Moreover,

entry can also raise prices; a small entrant cannot credibly threaten to disrupt the collusive

equilibrium, but does make collusion more profitable (and thus more attractive) to incumbent

firms. Thus, our analysis suggests that some standard antitrust remedies—such as breaking

up firms or facilitating entry—are of questionable use in thwarting collusion in markets with

syndication.

Our analysis also adds to the ongoing scholarly debate on whether the IPO underwriting
50Although here we work in a complete information environment, in further work (Hatfield et al.Hatfield et al., 2019b2019b),

we show that our conclusions are largely robust to relaxing our assumption that syndication offers are public.
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market is collusive and, if so, how collusion persists despite low market concentration in the

industry. Our results may offer insight into other features of the financial industry as well: For

example, regulatory barriers routinely restrict participation in certain types of investments to

investors that meet net worth or financial sophistication requirements. Reducing regulatory

barriers should increase the pool of available investors, which corresponds to increasing

productive capacity in our model; our Proposition 33 predicts that this increase in productive

capacity would likely reduce the highest sustainable price. Surprisingly, our work also suggests

that the industry may oppose reducing regulatory barriers even though higher capacity (i.e.,

more investors) reduces the total cost of production: the decrease in the highest sustainable

price from higher capacity may more than offset the lower costs due to increased capacity.

Another solution suggested by our work here would be to eliminate the “bake-off” procedure

for allocating an IPO and instead have firms submit bidding schedules for portions of the

IPO to underwrite.

Finally, our work also highlights the importance of considering the full extensive form of

firm interactions in industrial organization settings. Many industries are characterized by

repeated, complex interactions that are best modeled as repeated extensive form games, such as

IPO underwriting, debt origination, municipal auctions followed by horizontal subcontracting

between bidders, and real estate transactions with agent selection; further exploration of

repeated extensive form games is thus crucial to understanding subtle but important strategic

interactions in these, and many other, markets.
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A Proof of the Main Theorem

A.1 Bertrand Reversion Nash Equilibrium

In this section, we construct a Bertrand reversion Nash equilibrium which suffices to prove

Proposition 11, which we restate here for reference.

Proposition 1. There exists a subgame-perfect Nash equilibrium of the stage game, i.e., the

Bertrand reversion Nash equilibrium, in which each firm obtains a payoff of 0, its lowest

individually rational payoff.

In the Bertrand reversion Nash equilibrium, each firm f offers a price pft = c(1, 1), which

is exactly the cost of producing the good under full participation in the syndicate. The

buyer then chooses each firm as syndicate leader with equal probability. The syndicate

leader then offers each non-leader firm g a fee wgt = c(ϕ, ϕ) equal to g’s cost of production

(assuming all syndication offers are accepted). Each firm g ∈ F r {f} accepts this offer.

Under this behavior, each firm in the syndicate other than f then incurs production costs

of c(ϕ, ϕ) and thus breaks even. Moreover, the syndicate leader also breaks even as he

obtains c(1, 1) = |F |c(ϕ, ϕ) from the buyer, he incurs production costs of c(ϕ, ϕ), and he

pays (|F | − 1)c(ϕ, ϕ) in total to the syndicate, leaving him with exactly 0 in profit.5151

If any firm makes an offer other than c(1, 1) to the buyer, the buyer chooses the lowest

offer.5252 Firms’ responses to syndication offers do not depend on the set of offers made

to the buyer. If the syndicate leader offers a fee of c(ϕ, ϕ) to each other firm, then each

other firm accepts this offer. If the syndicate leader offers a fee other than c(ϕ, ϕ) to
51Recall that c(·, ·) is homogeneous of degree one.
52If there are multiple lowest offers, the buyer chooses each with equal probability.
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any firm, then within-period continuation play can follow any profile of actions for the

other firms g 6= f that constitutes a Nash equilibrium of the within-period continuation

game.5353 Note, however, that regardless of the equilibrium play after a fee other than

c(ϕ, ϕ) has been offered to some firm, the syndicate leader f ’s profits are no greater than

pf − c(ϕ, ϕ) − (|F | − 1)c(ϕ, ϕ) ≤ c(1, 1) − |F |c(ϕ, ϕ) = 0. This follows as no offer greater

than c(1, 1) will be accepted by the buyer, and no firm will accept a syndication offer of less

than c(ϕ, ϕ), which is its minimal cost of production as a member of a syndicate. Thus, the

syndicate leader will not wish to deviate from the strategy prescribed above. Given his play,

other firms will not wish to deviate from their prescribed strategies either.

A.2 Maintaining Collusion with Grim Trigger Strategies When

the Market Is Concentrated

We now prove Proposition 22, restated here, that the monopoly price v is sustainable when firms

are patient and the number of firms is sufficiently small. Moreover, under these conditions,

collusion can be sustained via “grim trigger” strategies: after a deviation in either step of the

stage game, play in all subsequent periods reverts to the Bertrand reversion Nash equilibrium

described in Section 3.13.1.

Proposition 2. If the discount factor is sufficiently high, i.e., δ ≥ 1− ϕ, then there exists

a subgame-perfect Nash equilibrium in which each firm offers the monopoly price in every

period, i.e., pft = v for any v ≥ c(1, 1), for all f ∈ F and for all t.

We construct a subgame-perfect Nash equilibrium where every firm offers the monopoly

price as follows:

• There are two phases of equilibrium play:

1. In the cooperation phase:
53Note that there may be multiple such Nash equilibria, as whether a syndication offer is profitable for a

firm may depend on whether other firms accept their syndication offers.
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– Every firm submits the same bid p = v,

– The buyer accepts the lowest price offer so long as one such offer is less than

or equal to v. If there are multiple such offers, the buyer accepts each such

offer with equal probability. If there are no such offers, the buyer rejects all

the offers.

– Every firm, if it becomes the syndicate leader, offers every other firm c(ϕ, ϕ)

to join the syndicate, and

– Every other firm accepts this offer.

2. In the Bertrand reversion phase, firms play the Bertrand reversion Nash equilib-

rium.

• Under equilibrium play, play continues in the same phase. If, in the cooperation phase,

any firm f deviates in the first step or deviates with respect to the prescribed set

of offers, then play proceeds to the Bertrand reversion phase. Moreover, if any firm

accepts or rejects a syndication offer contrary to the prescribed play, play proceeds to

the Bertrand reversion phase.

It is immediate that along the prescribed path of play every firm offers v for all t.

It is also immediate that play in the Bertrand reversion phase is subgame-perfect, as play

is a subgame-perfect Nash equilibrium of the stage game (Proposition 11).

In the cooperation phase, an argument analogous to that used to prove Proposition 11

shows that offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production

costs; moreover, only by offering c(ϕ, ϕ) to each other firm can the syndicate leader possibly

obtain positive profits in the future. Thus, offering c(ϕ, ϕ) to each other firm is the optimal

action by the syndicate leader during the cooperation phase.

It is immediate that the buyer is acting optimally given the price offers.

Finally, we consider whether any firm will wish to be a price deviator. The expected
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profits from the equilibrium strategy are given by

1
1− δϕ(v − c(1, 1)).

Again using an argument analogous to that used to prove Proposition 11, we have that

offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production costs; thus, a

price deviator’s production costs are given by c(1, 1). Moreover, as we revert to Bertrand

competition after a price deviation, profits in all future periods will be 0. Thus, the profits

from deviating on price are bounded by

v − c(1, 1).

Thus, so long as δ ≥ 1− ϕ, the strategies described here constitute a subgame-perfect Nash

equilibrium.

A.3 Maintaining Collusion with Syndicate Punishments

In this section, we give a formal construction of the strategy profile which sustains the price

p? defined in Theorem 11, and show that this strategy profile constitutes a subgame-perfect

Nash equilibrium. Finally, we show that no subgame-perfect Nash equilibrium can sustain a

price higher than p?.

The equilibrium is constructed as follows:

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,

– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,
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– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) to every

non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, ϕ), v}, the collusive punishment

price,

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) + ψg to

every non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, firms play the Bertrand reversion Nash equilib-

rium.

• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers. If so, future play depends on the syndication offers that are made.

Given the fees {wh}h∈Fr{f} offered by f , we say that a set H ⊆ F r {f} is internally

consistent if, for all h ∈ H, we have that wh − c
(

1
|H|+1 , ϕ

)
≥ 0; that is, a set H is

internally consistent if every firm in H weakly prefers to accept its syndication offer

(ignoring payoffs in future periods), assuming that only the firms comprising H accept

their syndication offers. Note that, trivially, the empty set is internally consistent.

Furthermore, there is a largest internally consistent set in the superset sense. This follows

from the fact that, if both H and Ĥ are internally consistent, then H ∪ Ĥ is internally
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consistent. To see this, note that for all h ∈ H, we have that wh − c
(

1
|H|+1 , ϕ

)
≥ 0,

implying that wh − c
(

1
|H∪Ĥ|+1 , ϕ

)
≥ 0, as the cost function is decreasing in the

production share; similarly, for all ĥ ∈ Ĥ, we have that wĥ − c
(

1
|H∪Ĥ|+1 , ϕ

)
≥ 0, and

so H ∪ Ĥ is internally consistent by definition. Let H̃ denote the largest internally

consistent set given the fees {wh}h∈Fr{f}.

In equilibrium, future play will depend on the surplus that can be captured by the

largest internally consistent set H̃, which is given by ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

. Based

on this sum, we categorize the set of offers made by a deviating firm f into three cases:

uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

= 0. In this case, rejecting the syn-

dication offer is a best response for each non-leading firm, as the fee offered is

weakly less than each non-leading firm’s cost of production (given that other firms

are rejecting their syndication offers).5454 Thus, every non-leading firm rejects its

offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))
≤ δ

1−δ (q − c(1, 1)). In this case, ab-

sent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


wh−c

(
1

|H̃|+1 ,ϕ

)
∑

g∈H̃

(
wg−c

(
1

|H̃|+1 ,ϕ

))(q − c(1, 1)) h ∈ H̃

0 h ∈ F r H̃.

Sufficient Offers: ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

> δ
1−δ (q − c(1, 1)). In this case, play will

enter the Bertrand reversion phase in the next period regardless of each non-leading
54In fact, rejecting its syndication offer is a best response for each non-leading firm even if every (other)

firm in H̃ accepts its offer of syndication.
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firm’s behavior. In period, each non-leading firm h accepts its syndication offer if

and only if the firm is in H̃. Thus, each firm accepts its syndication offer if and

only if that offer is (weakly) profitable within-period, given the actions of other

firms. This is optimal, as future profits will be 0 for every firm, regardless of its

actions, as play enters the Bertrand reversion phase.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.

Figure 22 provides an automaton representation of the subgame-perfect Nash equilibrium

described here.

It is immediate that the conjectured equilibrium delivers a price of p? in each period. We

now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

A.3.1 Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers

are best responses. It is immediate that, after equilibrium play in either the cooperation

phase or a collusive punishment phase, it is a best response for each non-leading firm to

accept its syndication offer.5555 It is also immediate that, in the case of uniformly low offers,

it is a best response for each non-leading firm to reject its syndication offer.5656 Finally, it is

immediate that, in the case of sufficient offers, each non-leading firm plays a best response;

each non-leading firm only accepts its syndication offer if accepting provides a non-negative

payoff in this period, and play continues to the Bertrand reversion phase regardless of the

firm’s actions.
55This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects

the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.
56To see this, consider two cases: If H̃ = ∅, then wh − c

( 1
2 , ϕ

)
< 0 for all h ∈ H (as otherwise {h} would

be internally consistent); thus, given that no other firm is accepting, every firm strictly prefers rejecting. If
H̃ 6= ∅, since

∑
h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

= 0, we must have that wh − c
(

1
|H̃|+1 , ϕ

)
≤ 0 for all h ∈ H; thus,

given that no other firm is accepting, every firm weakly prefers rejecting.
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We now show that, in the case of insufficient offers, it is a best response for each non-leading

firm to reject its offer of syndication:

• First, consider a firm h ∈ H̃. We first calculate the total payoff for h from accepting its

offer. This is given by

wh − c
(1

2 , ϕ
)
≤ wh − c

(
1

|H̃|+ 1
, ϕ

)
,

because play reverts to the Bertrand reversion phase if h accepts its offer, in which

case h will earn 0 future profits.5757 Meanwhile, the total payoff for h in the continuation

game from rejecting the offer is

δ

1− δψ
h = δ

1− δ

 wh − c
(

1
|H̃|+1 , ϕ

)
∑
g∈H̃

(
wg − c

(
1

|H̃|+1 , ϕ
))(q − c(1, 1))


≥ wh − c

(
1

|H̃|+ 1
, ϕ

)
,

where the inequality follows from the fact that ∑g∈H̃

(
wg − c

(
1

|H̃|+1 , ϕ
))
≤ δ

1−δ (q −

c(1, 1)), as we are in the insufficient offers case.5858

• Second, we consider a firm h ∈ F r (H̃ ∪ {f}). The total payoff for h from accepting

its offer is given by

wh − c
(1

2 , ϕ
)
≤ wh − c

(
1

|H̃ ∪ {h}|+ 1
, ϕ

)
< 0,

where the second inequality follows from the fact that H̃ is the largest internally

consistent set.5959 Meanwhile, the total payoff for h in the continuation game from
57Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it

accepts its offer of syndication, it will be the only firm to join the syndicate and thus will have production
costs of c

( 1
2 , ϕ

)
.

58Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it
rejects its offer of syndication, play will shift to a collusive punishment phase.

59Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it
accepts its offer of syndication, it will be the only firm to join the syndicate and thus will have production
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rejecting the offer is 0, regardless of the actions of other non-leading firms.

Thus, it is a best response for every non-leading firm to reject its syndication offer in the

insufficient offers case.

A.3.2 Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of

the lowest price offers less than or equal to its reservation price v.

A.3.3 Deviating on Price or Syndication Offers in the Collusive Punishment

Phase

We begin by verifying that, during a collusive punishment phase, no firm has an incentive

to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication

offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader

and then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate,

and f will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is

at most q − c(1, ϕ) ≤ c(1, ϕ)− c(1, ϕ) = 0 as q = min{v, c(1, ϕ)}. Moreover, firm f ’s profits

in every future period will be 0. Therefore, firm f ’s total profits from making uniformly

low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation

value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make

uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during a collusive punishment phase. Note that sufficient offers

require that the price deviator provide the firms in H̃ with dynamic compensation totaling

at least δ
1−δ (q − c(1, 1)) above their costs of production (assuming that, as the equilibrium

specifies, all the firms in H̃ accept and all the firms not in H̃ reject). Thus, the in-period

costs of c
( 1

2 , ϕ
)
.
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payoff to the deviating firm f is at most

q︸︷︷︸
Price

− (|H̃|+ 1)c
(

1
|H̃|+ 1

, ϕ

)
︸ ︷︷ ︸

Total cost of production
when firms in H̃ participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation
required by firms in H̃

≤ q − c(1, 1)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, 1))

=
(

1− δ

1− δ

)
(q − c(1, 1))

≤ 0,

where the last inequality follows as δ ≥ 1
2 .

6060 In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff

from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium

play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .

A.3.4 Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate

or, if selected as the syndicate leader, not make the prescribed syndication offers. First,

consider the payoff to a deviating firm f that is selected as syndicate leader and then makes

uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive a

payment of at most p? from the buyer. Thus, firm f ’s profit in-period is at most p? − c(1, ϕ).

Moreover, firm f ’s profits in every future period will be 0. Therefore, firm f ’s total profits

from making uniformly low or insufficient offers are at most p? − c(1, ϕ). On the other hand,

firm f enjoys profits each period of ϕ(p? − c(1, 1)) by not deviating. Consequently, it is not
60Our result also obtains for some discount factors less than 1

2 , but assuming that δ ≥ 1
2 greatly simplifies

our presentation here. In particular, assuming that δ ≥ 1
2 is sufficient to guarantee that the future payoffs

in the collusive punishment phase available to firms other than f are sufficiently large that f will prefer to
engage in lone production rather than pay sufficient fees to entice firms to join f ’s syndicate. When δ falls
slightly below 1

2 , we can obtain the same highest sustainable price, but this requires carefully choosing firms’
conjectures about how other firms will respond to off-path syndication offers after a deviation.
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profitable for f to deviate and make uniformly low or insufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, ϕ),

which holds as p? ≤ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ by construction.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during the cooperation phase. Recall that sufficient offers require

that the price deviator provide the firms in H̃ with dynamic compensation totaling at least
δ

1−δ (q − c(1, 1)) above their costs of production. Thus, the in-period payoff to the deviating

firm f is at most

p?︸︷︷︸
Price

− c(1, 1)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (1)

In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s

future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that

given by (11). By contrast, if firm f continues with equilibrium play, firm f enjoys profits

each period of ϕ(p? − c(1, 1)). Consequently, it is not profitable for f to deviate and make

sufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, 1)− δ

1− δ (q − c(1, 1)),

which reduces to

p? ≤ (1− δ)c(1, 1) + δ(q − c(1, 1))− ϕc(1, 1)
1− δ − ϕ .

There are now two cases to consider, depending on q = min{c(1, ϕ), v}: In the first case,

q = c(1, ϕ). Thus, as p? = min{ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ , v} ≤ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , it is not profitable for
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f to deviate by making sufficient offers so long as

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))− ϕc(1, 1)

1− δ − ϕ

(1− δ)c(1, ϕ) ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))

(2δ − 1)c(1, 1) ≤ (2δ − 1)c(1, ϕ),

which holds since δ ≥ 1
2 and c(1, 1) < c(1, ϕ).

In the second case, q = v, which implies that p? = v.6161 Thus, it is not profitable for f to

deviate by making sufficient offers so long as

v ≤ (1− δ)c(1, 1) + δ(v − c(1, 1))− ϕc(1, 1)
1− δ − ϕ

(1− δ − ϕ)v ≤ δv + (1− 2δ − ϕ)c(1, 1)

(2δ + ϕ− 1)c(1, 1) ≤ (2δ + ϕ− 1)v.

This holds since δ ≥ 1
2 , ϕ > 0, and v ≥ c(1, 1).

Thus, for δ ≥ 1
2 , p

? can be sustained.

A.3.5 Maximality of p?

It now remains to show that no price higher than p? can be sustained. There are two cases

to consider, depending on whether p? = v or p? = (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ : In the former case, no

price greater than p? = v can be sustained as no buyer will accept an offer higher than v.

In the latter case, suppose there existed an equilibrium in which the buyer accepted an

offer of p > p? each period. We show that at least one firm is not playing a best response: The

total industry profits generated each period are at most p− c(1, 1), and so the total expected

industry profits are at most 1
1−δ (p− c(1, 1)). Thus, there must exist at least one firm f with

61Note that when 1 − δ − ϕ > 0, we may calculate that p? ≥ q, as (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ − c(1, ϕ) =

ϕ(c(1,ϕ)−c(1,1))
1−δ−ϕ > 0, and so min{ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , v} −min{c(1, ϕ), v} ≥ 0.
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total expected profits of at most 1
1−δϕ(p− c(1, 1)). If firm f deviated by offering a price of

p− ε and engaging in lone production, f ’s in-period profits approach p− c(1, ϕ) as ε→ 0.

No matter the behavior of other firms in subsequent play, f can guarantee itself non-negative

profits in each subsequent period.6262 Therefore, firm f has profits of deviating of at least

p− c(1, ϕ) > 1
1−δϕ(p− c(1, 1)), its profits from not deviating, as p > p? = (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ .

A.3.6 Behavior of p?

We now show that p? is quasiconvex in order to show that p? is either single-troughed or flat.

In the region where p? is less than v, we have that the second derivative of p? with respect to

ϕ is given by

∂2p?

∂ϕ2 =
(1− δ)∂

2c(1,ϕ)
∂ϕ2

1− δ − ϕ + 2
1− δ − ϕ

(1− δ)
(
c(1, ϕ)− c(1, 1) + (1− δ − ϕ)∂c(1,ϕ)

∂ϕ

)
(1− δ − ϕ)2︸ ︷︷ ︸

∂p?

∂ϕ

,

which is positive at any critical point of p?: The first term is positive as the cost function is

convex in its second argument (and δ < 1− ϕ) and the second term must be 0 at any critical

point. Thus, p? is quasiconvex over the region where p? < v. It is then immediate that p?

is quasiconvex over its entire domain as it is the minimum of a quasiconvex function and a

constant.

Finally, for ϕ ∈ (0, 1− δ), we have that

p? = min
{

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ , v

}

and it is immediate that

lim
ϕ→0

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ =∞

62For example, f could offer a price of c(1, ϕ) and, if chosen by the buyer, offer a syndication fee of 0 to all
other firms and, if not chosen, reject all syndication offers.
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as limϕ→0 c(1, ϕ) =∞ by assumption. Further,

lim
ϕ→1−δ

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ =∞.

Thus, if v is sufficiently high, i.e., v exceeds the minimum of (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ for ϕ ∈ (0, 1−δ),

the highest sustainable price p? is single-troughed in ϕ; otherwise p? = v.

B Proofs of Other Results

B.1 Proof of Proposition 33

We first show that industry profits in the maximally collusive equilibrium are decreasing in k.

It is easy to verify that price is now given by:

p? = (1− δ)c(1, ϕk)− ϕc(1, k)
1− δ − ϕ .

Industry profits per period are thus

Π ≡ (1− δ)c(1, ϕk)− ϕc(1, k)
1− δ − ϕ − c(1, k) = 1− δ

1− δ − ϕk
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
.

where the equality follows from the fact that the cost function is homogeneous of degree 1.

Differentiating profits with respect to k, and then multiplying by 1−δ−ϕ
1−δ gives

1− δ − ϕ
1− δ

∂Π
∂k

=
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
− 1
k

(
cs

(1
k
, ϕ
)
− cs

(1
k
, 1
))
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Letting g(x) = c(x, ϕ)− c(x, 1) and x = 1
k
, we have that

1− δ − ϕ
1− δ

∂Π
∂k

= g(x)− xg′(x)

= g(x)− g(0)− (x− 0)g′(x)

< 0,

where the second equality follows from the from the fact that c(0, y) = 0 for all y ≥ 0, and

the inequality follows from the convexity assumption of the theorem.

Since both the cost of efficient joint production and industry profits in the maximally

collusive equilibrium are decreasing in k, the highest sustainable price must also be decreasing

in k.

B.2 Proof of Theorem 22

To show that p? is the highest sustainable price, we construct an equilibrium of the following

form:6363

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,

– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕk) to every

non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,
63It is immediate that, when ϕ ∈ (1− δ, 1], we can sustain collusion exactly as in the proof of Theorem 11.

49



– every firm submits the same bid q = min{c(1, ϕ), v},

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) + ψg to

every non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production,

and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, firms play the Bertrand reversion Nash equilib-

rium.6464

• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers. If so, future play depends on the sum over the non-leading firms

of the (positive) difference between the syndication fee wg offered to each firm g and

the cost to that firm of doing sg of the project, ∑g∈Fr{f}(wg − c(sg, ϕ))+.6565 Based on

this sum, we categorize the set of offers made by a deviating firm f into three cases:

uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, ϕ))+ = 0. In this case, rejecting the

syndication offer is a best response for each non-leading firm, as the fee offered

is weakly less than each non-leading firm’s cost of production. Thus, every firm

rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, ϕ))+ ≤ δ

1−δ (c(1, ϕ)− c(1, 1)). In this case,
64Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕ,ϕ) for

agreeing to perform ϕ of the production.
65Here, (x)+ ≡ max{0, x}.
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absent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,ϕ))+∑

g∈Fr{f}(wg−c(sg ,ϕ))+ (q − c(1, 1)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, ϕ))+ > δ
1−δ (q − c(1, k)). In this case, play en-

ters the Bertrand reversion phase in the next period; in period, each firm h accepts

if and only if wh ≥ c(sg, ϕ).

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.

The proof that this strategy profile is a subgame-perfect Nash equilibrium and that it

attains the highest sustainable price of any subgame-perfect Nash equilibrium then follows as

in the proof of Theorem 11 given in Appendix AA.6666

C Collusion with Fixed Firm Capacity

Our baseline model assumes that the total capacity of the industry is fixed as the number of

firms grows; thus, the capacity per firm falls as the number of firms grows. Here, we consider

the alternative case in which firm capacity is fixed, and so the total capacity grows as the

number of firms grows; we denote by κ the (fixed) capacity of each firm. The equilibrium

for the case in which there are |F | firms and each firm has a capacity κ corresponds exactly
66Note that in this case one could construct equilibria that, after a price deviation, reward firms for rejecting

syndication offers by lowering the amount of production required of those firms in future periods. However,
it is more efficient to reward firms exclusively through fees; any vector of continuation payoffs that can be
achieved by a combination of particular combination of quantity offers and fees can be weakly improved upon
for firms being rewarded in the collusive punishment phase by having each firm perform an equal share and
modifying fees appropriately.
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to the case in which there are |F | firms and total capacity is k = |F |κ. Thus, we can use

Theorem 11 to derive the following result.

Theorem C.1. With fixed firm capacity κ, for δ ≥ 1
2 , the highest sustainable price, p?, is

given by

p? =


v ϕ ∈ [1− δ, 1]

min
{

(1−δ)c(1,κ)−c(ϕ,κ)
1−δ−ϕ , v

}
ϕ ∈ (0, 1− δ).

Moreover, limϕ→0 p
? = c(1, κ).

Theorem C.1C.1 demonstrates that, even in the limiting case in which each firm has a

particular fixed capacity κ (regardless of the number of firms), the highest sustainable price

is appreciably higher than the cost of production. Just as with Theorem 11, the syndicated

nature of the market drives Theorem C.1C.1: if a firm undercuts on price, other firms still have

the ability to punish the price deviator in-period by refusing to work with it. Since each firm

has a fixed capacity, the cost of lone production no longer increases as the number of firms

grows; thus, when there are a large number of firms, the highest sustainable price is exactly

the cost of lone production.

When each firm has a fixed capacity κ, the highest sustainable price is now weakly

decreasing in the number of firms.6767 Note, however, that the cost of efficient production is
67When p? < v, we calculate that

∂p?

∂ϕ
= (1− δ)c(1, κ)− c(ϕ, κ)− (1− δ − ϕ)cs(ϕ, κ)

(1− δ − ϕ)2 .

Note that c(1− δ, κ)− c(ϕ, κ) ≥ (1− δ − ϕ)cs(ϕ, κ) as c(s,m) is convex in its first argument. Thus

∂p?

∂ϕ
≥ (1− δ)c(1, κ)− c(ϕ, κ)− (c(1− δ, κ)− c(ϕ, κ))

(1− δ − ϕ)2

= (1− δ)c(1, κ)− c(1− δ, κ)
(1− δ − ϕ)2

= c(1− δ, (1− δ)κ)− c(1− δ, κ)
(1− δ − ϕ)2

> 0

where the last equality follows from the fact that c(s,m) is homogeneous of degree 1 and the last inequality
follows from the fact that c(s,m) is decreasing in its second argument.
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Figure 3: The highest sustainable price p? in green, the cost of efficient production in blue,
and the markup in red, all as a function of market concentration ϕ. Here, c(s,m) = s

α

(
s
m

)α
,

κ = 1
8 , δ = 3

4 , and the maximum price that the buyer is willing to pay is v = 15. In
Figure 3a3a, the markup is non-monotonic in the number of firms, while in Figure 3b3b, the
markup is monotonically decreasing in the number of firms once the industry is sufficiently
unconcentrated.

also now decreasing in the number of firms. Thus, the natural metric to evaluate the effect of

the number of firms on competition in this setting is industry profits as the number of firms

changes; we can calculate these profits as the markup over the cost of efficient production,

i.e., p? − c(1, k) where k = κ
ϕ
. As demonstrated in Figure 33, the effect of the number of firms

on industry profits is ambiguous and depends on the cost function; however, industry profits

never go to 0.

D Heterogeneous Firms

We now extend the model of Section 55 to consider the case in which firms’ productive

capacities differ.6868 Thus, for each f ∈ F , let κf be the productive capacity controlled by firm

f . It will be helpful to define κmax as the largest share of productive capacity controlled by

a single firm, i.e., κmax ≡ maxf∈F{κf}. Moreover, the total productive capacity is given by

k = ∑
f∈F κ

f .
68Here, modeling syndication contracts as specifying both a fee and a production share is natural, since

efficient production requires firms with different productive capacities to perform differing production shares.
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D.1 Equilibrium Characterization

We now characterize the highest sustainable price as a function of the firms’ productive

capacities, which we denote p̂?(κ; δ). To prove that p̂?(κ; δ) is sustainable, we construct an

equilibrium that sustains p̂?(κ; δ); this equilibrium is very similar to the one constructed in

Section 55.

In our constructed equilibrium, if a firm is small enough, it is allocated no surplus in the

cooperation phase. This is because, if a firm is small enough, the firm’s cost of production

will be greater than the highest sustainable price. Accordingly, it will not be profitable

for that firm to price-deviate and then engage in lone production. Therefore, no surplus is

needed to disincentivize this firm from price-deviating and then engaging in lone production.

This frees up additional surplus that can be allocated to larger firms that will be tempted

to price-deviate and then engage in lone production, enabling the industry to sustain a

higher collusive price. We call firms that obtain positive surplus in an equilibrium supporting

the highest sustainable price p̂?(κ; δ) collusion beneficiaries and denote the set of collusion

beneficiaries as F̂ .

To prevent a collusion beneficiary f from undercutting on price and engaging in lone

production, f ’s profits from colluding must be large enough that f prefers to adhere to

the equilibrium. Consider an equilibrium that sustains the price p and let rf denote the

fraction of surplus allocated to f . In an equilibrium, f must not be tempted to engage in

lone production, so the following constraint must hold:

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
. (2)

Maximizing price subject to constraint (22) for each collusion beneficiary, along with the

constraints that rf ≥ 0 for all firms and that ∑f∈F r
f = 1, yields the highest sustainable

price p̂?(κ; δ), as expressed in Theorem D.1D.1.

Theorem D.1. Suppose syndication offers specify both production shares and fees and firms
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may have heterogeneous production capacities and ϕ < 1− δ.6969 If

∑
f∈F

max
{
v − c

(
1, κf

)
, 0
}
≤ 1

1− δ (v − c(1, k)), (3)

then p̂? = v so long as

δ ≥ δ̂ ≡ v − c(1, k)
v − c(1, k) + min{v, c(1, κmax)} − c(1, k) ∈ [12 , 1);

otherwise, the highest sustainable price is given by the (unique) solution to

p̂? =
(1− δ)ϕ̂∑f∈F̂ c

(
1, κf

)
− ϕ̂c(1, k)

1− δ − ϕ̂

F̂ =
{
f ∈ F : p̂? ≥ c

(
1, κf

)}
ϕ̂ = 1

|F̂ |

so long as δ ≥ δ̂ ≡ p̂?−c(1,k)
p̂?−c(1,k)+c(1,κmax)−c(1,k) ∈ [1

2 , 1).7070

When Condition (33) is satisfied, firms are able to sustain the monopoly price; Condition (33)

ensures that (under efficient joint production) there are sufficient profits at a price of v that

profits can be divided among firms so that each firm prefers colluding in each period to

undercutting on price and engaging in lone production. This first case represents two

scenarios: In the first scenario, even the largest firm is relatively small, i.e., v < c(1, κmax).

Thus, sustaining v is relatively easy, as no firm has an incentive to undercut on price and

engage in lone production, regardless of its profit share. In this scenario, the discount factor

threshold δ̂ is simply 1
2 . This scenario holds when the largest firm is not too large and v is

sufficiently small.

In the second scenario, at least one firm f is large enough so that v > c
(
1, κf

)
. Thus,

to sustain v, it is necessary that any firm f such that v > c
(
1, κf

)
obtains positive profits

69When the market concentration ϕ is high enough, i.e., ϕ ≥ 1− δ, monopoly prices can be maintained by
traditional Bertrand reversion, “grim trigger,” strategies.

70See Appendix D.3D.3 for the proof of Theorem D.1D.1.
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sufficient to ensure that f prefers its flow of per-period profits to undercutting on price and

engaging in lone production today. Condition (33) ensures that there are sufficient profits to

distribute among firms so that each firm’s per-period profits are large enough to sustain v,

i.e., there exists ρ ∈ ∆F ≡ {ξ ∈ RF
≥0 : ∑f∈F ξf = 1} such that

1
1− δρ

f (v − c(1, k)) ≥ v − c
(
1, κf

)

for every f ∈ F . In this scenario, the discount factor threshold δ̂ is v−c(1,k)
v−c(1,k)+c(1,κmax)−c(1,k) .

In the second case (i.e., when Condition (33) is not satisfied), there are not sufficient profits

to distribute among the lower-cost firms to sustain v. Thus, the highest sustainable price is

below v and each firm is allocated per-period profits just sufficient to incentivize that firm to

not undercut on price and engage in lone production. Here, F̂ (κ, δ) is the set of firms that,

at the price p̂?(κ; δ), would obtain positive profits by undercutting on price and engaging in

lone production; any firm f ∈ F r F̂ (κ, δ) obtains 0 profits in any equilibrium that sustains

p̂?(κ; δ).

To provide intuition for Theorem D.1D.1, consider the example illustrated in Figure 44; this

figure represents an economy with 16 firms, 8 of which are “large” and have productive

capacity 1
16 + ε and 8 of which are “small” and have productive capacity 1

16 − ε. All three

scenarios of Theorem D.1D.1 are shown in Figure 44. The left panel of Figure 4a4a shows the

highest sustainable price as a function of ε: When the line is blue and firms are nearly

homogenous, there are not sufficient profits to distribute among the firms to sustain v; yet,

to sustain collusion, each firm must receive a positive share of the profits. As heterogeneity

increases, the cost for a small firm to engage in lone production is increasing and the cost for

a large firm to engage in lone production is decreasing; but since the cost function is convex

in productive capacity, the average cost of lone production, ϕ∑f∈F c
(
1, κf

)
, is increasing,

enabling the industry to sustain a higher collusive price.

When the line is red in Figure 4a4a, there are more than sufficient profits to distribute
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Figure 4: The highest sustainable price p̂?(κ̄; δ) and the lower bound δ̂ as a function of the
degree of heterogeneity ε. Here, c(s,m) = s

α

(
s
m

)α
, δ = 3

4 , and there are 16 firms; half of the
firms have productive capacity 1

16 + ε, and half of the firms have productive capacity 1
16 − ε.

among firms so that each firm’s per-period profits are large enough to sustain v. However,

once the small firms are small enough, each small firm’s cost of lone production rises above v,

and these firms could receive 0 profits; thus F̂ is the full set of firms when ε is small enough,

i.e., when ε is small enough that c
(
1, 1

16 − ε
)
≤ v, and F̂ is the set of large firms otherwise.

As heterogeneity increases even further, we enter the right blue-line region. Here, a further

increase in the size of each large firm continues to lower each large firm’s cost of engaging in

lone production; but now, there are not sufficient profits to distribute among the eight large

firms to sustain v, even while each small firm receives 0 profits. Further increases in ε further

increase the productive capacity of each of the large firms, decreasing the average cost of

lone production across the eight large firms, i.e., ϕ̂∑f∈F̂ c
(
1, κf

)
.
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The right panel of Figure 4a4a plots the discount factor lower bound δ̂(κ; δ) required by

Theorem D.1D.1. Since δ = 3
4 , the discount factor is sufficiently high in all cases described above.

The left panel of Figure 4b4b shows the highest sustainable price as a function of ε and

considers parameters so that each of the three scenarios of Theorem D.1D.1 holds for some degree

of heterogeneity. In the green-line region, firms are relatively homogenous, and the cost of

lone production for each firm exceeds v.7171 In the red-line region, each of the eight large firms

can now produce alone for less than v; however, there are still sufficient profits to distribute

among firms to sustain v. Finally, in the blue-line region, each of the eight large firms is now

large enough that v can no longer be sustained. The right panel of Figure 4b4b again plots

the discount factor lower bound δ̂(κ; δ) required by Theorem D.1D.1 and shows that δ = 3
4 is

sufficiently high.

The construction of the equilibrium that sustains p̂?(κ; δ) is similar to that of the homoge-

nous case. In the cooperation phase of our constructed equilibrium, each firm submits a bid

of p̂?(κ; δ). However, the amount of surplus received by each firm now depends on that firm’s

productive capacity. Larger firms, i.e., firms with a larger productive capacity, receive a

greater share of surplus, as the cost of lone production is lower for a larger firm. After a price

deviation, if syndication offers are insufficient and every non-leading firm rejects the price

deviator’s offer, then play enters a collusive punishment phase. The price in this collusive

punishment phase is given by min{c(1, κmax), v}. This ensures that no firm has an incentive

to deviate and engage in lone production (as the cost of lone production will be at least

the price). Finally, there is also a Bertrand reversion phase, in which the price is the cost

of efficient joint production c(1, k). Play enters this stage whenever any firm deviates with

respect to accepting or rejecting offers of syndication. The restriction on the discount factor

δ̂(κ; δ) ensures that undercutting on price and recruiting a syndicate is not profitable—i.e.,

that the binding constraint on the highest sustainable price remains the profits available from

price-deviating followed by lone production.
71Note that lone production is very costly in Figure 4b4b due to the high curvature of the cost function.
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D.2 Market Entry

We now consider the effect of entry by a small firm on the highest sustainable price. When

a firm enters the market, there are three possible effects: First, it may become easier for

a price deviator to form a syndicate, making collusion more difficult. However, when the

discount factor is high enough, a price-deviator will find forming a syndicate more costly

than engaging in lone production, so this effect does not alter the highest sustainable price.

Second, the new entrant may itself price-deviate and engage in lone production; this may

make collusion more difficult. But, for a small enough entrant, the cost of lone production is

higher than the highest sustainable price when the entrant is not present, and so the entrant

will not price-deviate and engage in lone production.7272 Third, the additional productive

capacity of the entrant reduces the cost of joint production, which makes collusion at the

current price more profitable. This last effect always has bite, and so entry by a small enough

entrant raises the highest sustainable price.

Proposition D.1. If syndication offers specify both production shares and fees, δ > δ̂(κ; δ),

p̂?(κ; δ) < v, and limm→0 c(s,m) =∞ for all s > 0, then there exists an ε > 0 such that entry

by a firm f with productive capacity κf < ε will increase the highest sustainable price, i.e.,

p̂?((κ, κf ); δ) > p̂?(κ; δ).

Figure 55 depicts the highest sustainable price for a simple economy as a function of the

size of the entrant. When no entrant is present, the highest sustainable price is 15; however,

for small entrants, the highest sustainable price is (slightly) higher than 15. This happens

because a sufficiently small entrant does not have the productive capacity to profitably

undercut the collusive price and engage in lone production. Moreover, the entrant’s capacity

makes collusion more profitable for the incumbent firms, as it decreases the cost of joint

production. This makes collusion relatively more attractive to the incumbent firms, compared
72Similarly, if entrants are unable to bid but instead can only participate in the syndicate, the highest

sustainable price will increase after entry.
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Figure 5: The highest sustainable price p̂?((κ, κf); δ) as a function of entrant size κf . Here,
c(s,m) = s2

m
, δ = 3

4 , v = 25, and there are 8 incumbent firms each with productive capacity
1
8 . The dashed line denotes the highest sustainable price without entry.

to price-deviating and engaging in lone production. Thus, entry by a sufficiently small firm

will facilitate collusion as opposed to hampering it. In particular, our result here implies that

the existence of a “competitive fringe” of small firms does not necessarily hamper the ability

of larger firms to collude and sustain high prices.

However, for a sufficiently large entrant, collusion will become more difficult. An entrant

with enough productive capacity can profitably undercut the collusive price by price-deviating

and engaging in lone production; this occurs when κf becomes approximately 1
16 in Figure 55.

Thus, when the entrant has sufficient production capacity, some industry profits must be

allocated to the entrant in order to make colluding a more rewarding option for the entrant

than price-deviating and engaging in lone production. Allocating some profits to the entrant

leaves fewer industry profits for the other firms, making collusion relatively less attractive to

them. This makes collusion more difficult, reducing the highest sustainable price.
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D.3 Proof of Theorem D.1D.1

D.3.1 Constrained Profit Maximization

We first find the maximal price p subject to the constraints that each firm’s total discounted

profits are larger than its one-period profit from lone production at price p, each firm’s profits

are positive, and the price is no greater than v. To do this, we let rf denote the share of

profits allocated to firm f . Thus, we solve

max
p,r
{p} (4)

subject to the constraints

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
for all f ∈ F

rf ≥ 0 for all f ∈ F

p ≤ v∑
f∈F

rf = 1.

We transform the problem given by (44) by letting πf = rf (p− c(1, k)) be the (per-period)

profit for f , and so obtain the problem

max
π

∑
f∈F

πf

 (5)

subject to the constraints

1
1− δπ

f ≥

∑
g∈F

πg

+ c(1, k)− c
(
1, κf

)
for all f ∈ F

πf ≥ 0 for all f ∈ F∑
f∈F

πf ≤ v − c(1, k).
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The first constraint is the no lone deviation constraint, the second constraint ensures that each

firm’s profits are non-negative, and the third constraint ensures that the price is no greater

than v. This is a convex optimization problem; thus, by Theorem 7.16 of SundaramSundaram (19961996),

if there exists a vector of continuation payoffs π within the constraint set and Lagrangian

multipliers λ, µ, and ν that satisfy the Kuhn-Tucker conditions given π, i.e., for all f ∈ F ,

1 + 1
1− δλ

f −
∑
g∈F

λg + µf − ν = 0 (6)

λf ≥ 0 and λf
 1

1− δπ
f −

∑
g∈F

πg

− c(1, k) + c
(
1, κf

) = 0 (7)

µf ≥ 0 and µfπf = 0 (8)

ν ≥ 0 and ν
v − c(1, k)−

∑
f∈F

πf

 = 0, (9)

then π maximizes (55) subject to the constraints. To characterize the price and profit shares

that solve these equations, we consider two cases:

First, suppose that ∑f∈F max
{
v − c

(
1, κf

)
, 0
}
> 1

1−δ (v − c(1, k)). To find a solution to

(66)–(99), we first find the unique p ∈ (c(1, k), v) such that

1
1− δ (p− c(1, k)) =

∑
f∈F

max
{

0, p− c
(
1, κf

)}
.

Intuitively, the left hand side of the equation is the industry profits produced, while the right

hand side is the sum of the profit of each firm if it were to price deviate and engage in lone

production (for those firms for which it is profitable to do so), which is the total amount of

profits required to keep firms from deviating. The price that solves this equation exists and is

unique: Both sides of the equation are 0 at p = c(1, k), the slope of the left hand side (with

respect to p) is always 1
1−δ , the slope of the right hand side around p = c(1, k) is 0, both

sides are continuous in p, and, at p = v, the right hand side is greater than the left hand side

by assumption. Let p̂? be this unique solution, let F̂ ≡
{
f ∈ F : p̂? > c

(
1, κf

)}
be the set of
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firms such that p̂? is greater than their cost of lone production, and let ϕ̂ ≡ 1
|F̂ | . The solution

to (66)–(99) is then given by

πf = (1− δ) max
{

0, p− c
(
1, κf

)}

λf =


(1−δ)ϕ̂
1−δ−ϕ̂ f ∈ F̂

0 f ∈ F r F̂

µf =


0 f ∈ F̂

ϕ̂
1−δ−ϕ̂ f ∈ F r F̂ .

ν = 0.

Finally, we solve for the p̂? implied by this solution to our convex program as

p̂? =
(1− δ)ϕ̂∑f∈F̂ c

(
1, κf

)
− ϕ̂c(1, k)

1− δ − ϕ̂ .

Second, suppose that ∑f∈F max
{
v − c

(
1, κf

)
, 0
}
≤ 1

1−δ (v− c(1, k)). A solution to (66)–(99)

is then given by7373

πf = (1− δ) max
{

0, v − c
(
1, κf

)}
+ ϕ

v − c(1, k)− (1− δ)
∑
g∈F

max
{

0, v − c
(
1, κf

)}
λf = 0

µf = 0

ν = 1.

D.3.2 Proving p̂? Is Sustainable

To show that p̂?(κ; δ) is the highest sustainable price, we construct an equilibrium as follows:
73Note that in this case, the only binding constraint will be (99); thus, the per-period values π calculated

here are not necessarily unique.
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• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p̂?(κ; δ),

– the short-lived buyer accepts one such offer of p̂?(κ; δ), choosing each offer

with equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + πg

to each non-leading firm ` for agreeing to perform ϕg of production, where

ϕg ≡ κg

k
,7474 and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, κmax), v},

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + ψg to

every non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, firms play the Bertrand reversion Nash equilib-

rium.7575

• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers.
74Note that each firm performing ϕg of production is the lowest-cost (i.e., efficient) production plan.
75Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕg, κg)

for agreeing to perform ϕg of the production.
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• If so, future play depends on the sum over the non-leading firms of the (positive)

difference between

– the syndication fee wg offered to each firm g and

– the cost to firm g of production sg

in the syndication contracts offered by f , i.e., ∑g∈Fr{f}(wg − c(sg, κg))+.7676 Based on

this sum, we categorize the set of offers made by a deviating firm f into three cases:

uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ = 0. In this case, rejecting the

syndication offer is a best response for each non-leading firm, as the fee offered

is weakly less than each non-leading firm’s cost of production. Thus, every firm

rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, κg))+ ≤ δ

1−δ (q − c(1, k)). In this case, ab-

sent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,κh))+∑

g∈Fr{f}(wg−c(sg ,κg))+ (q − c(1, k)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ > δ
1−δ (q − c(1, k)). In this case, play en-

ters the Bertrand reversion phase in the next period; in period, each firm h accepts

if and only if wh ≥ c
(
sh, κh

)
.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.
76Here, (x)+ ≡ max{0, x}.
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It is immediate that the conjectured equilibrium delivers a price of p̂?(κ; δ) in each period.

We now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers

are best responses. It is immediate that, after equilibrium play in either the cooperation

phase or a collusive punishment phase, it is a best response for each non-leading firm to

accept its syndication offer.7777 It is also immediate that, in the case of uniformly low offers,

it is a best response for each non-leading firm to reject its syndication offer.7878 Finally, it is

immediate that, in the case of sufficient offers, each non-leading firm plays a best response;

each non-leading firm only accepts its syndication offer if accepting provides a non-negative

payoff in this period, and play continues to the Bertrand reversion phase regardless of the

firm’s actions.

To show that, in the case of insufficient offers, it is a best response for each non-leading

firm to reject the offer of syndication, we calculate the total payoff for h from accepting the

offer as

wh − c
(
sh, κh

)
,

as play reverts to the Bertrand reversion phase if h accepts the offer (even if other firms

reject their syndication offers). Meanwhile, the total payoff for h in the continuation game

from rejecting its syndication offer is

δ

1− δψ
h = δ

1− δ


(
wh − c

(
sh, κh

))+

∑
g∈Fr{f}(wg − c(sg, κg))+ (q − c(1, k))


≥ wh − c

(
sh, κh

)
,

77This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects
the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.

78This follows as each syndication offer provides the firm with non-positive surplus and play continues to
the Bertrand reversion phase regardless of the firm’s actions.
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where the inequality follows from the fact that ∑g∈Fr{f}(wg − c(sg, κg))+ ≤ δ
1−δ (q − c(1, k)),

as we are in the insufficient offers case. Thus, it is a best response for every non-leading firm

to reject its syndication offer in the insufficient offers case.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of

the lowest price offers less than or equal to its reservation price v.

Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We now verify that, during a collusive punishment phase, no firm has an incentive to price-

deviate or, if selected as the syndicate leader, not make the prescribed syndication offers.

First, consider the payoff to a deviating firm f that is selected as syndicate leader and then

makes uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will

receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is at most

q − c
(
1, κf

)
≤ c(1, κmax)− c

(
1, κf

)
≤ 0 as q = min{v, c(1, κmax)}. Moreover, firm f ’s profits

in every future period will be 0. Therefore, firm f ’s total profits from making uniformly

low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation

value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make

uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during a collusive punishment phase. Recall that sufficient offers

require that the price deviator provide the non-leading firms with dynamic compensation

totaling at least δ
1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff

to the deviating firm f is at most

q︸︷︷︸
Price

− c(1, k)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

=
(

1− δ

1− δ

)
(q − c(1, k)) ≤ 0,
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where the last inequality follows as δ ≥ 1
2 . In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff

from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium

play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .

Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate

or, if selected as the syndicate leader, not make the prescribed syndication offers. First,

consider the payoff to a deviating firm f that is selected as syndicate leader and then makes

uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive

a payment of at most p̂?(κ; δ) from the buyer. Thus, firm f ’s profit in-period is at most

p̂?(κ; δ)− c
(
1, κf

)
. Moreover, firm f ’s profits in every future period will be 0. Therefore, firm

f ’s total profits from making uniformly low or insufficient offers are at most p̂?(κ; δ)−c
(
1, κf

)
.

On the other hand, firm f enjoys profits each period of rf (p̂?(κ; δ)− c(1, k)) by not deviating.

Consequently, it is not profitable for f to deviate and make uniformly low or insufficient

offers so long as
1

1− δ r
f (p̂?(κ; δ)− c(1, k)) ≥ p̂?(κ; δ)− c

(
1, κf

)
;

but this constraint is satisfied by the construction of p̂?(κ; δ)—see (44).

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during the cooperation phase. Recall that sufficient offers require

that the price deviator provide the non-leading firms with dynamic compensation totaling

at least δ
1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff to the

deviating firm f is at most

p̂?(κ; δ)︸ ︷︷ ︸
Price

− c(1, k)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (10)
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In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s

future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that

given by (1010). By contrast, if firm f continues with equilibrium play, firm f enjoys profits

each period of rf(p̂?(κ; δ)− c(1, k)). Consequently, it is not profitable for f to deviate and

make sufficient offers so long as

1
1− δ r

f (p̂?(κ; δ)− c(1, k)) ≥ p̂?(κ; δ)− c(1, k)− δ

1− δ (q − c(1, k)).

Note that, for a small enough firm f , we could have rf = 0. Thus, we must have δ large

enough so that

0 ≥ p̂?(κ; δ)− c(1, k)− δ

1− δ (q − c(1, k)).

Thus, solving for δ, we have

δ ≥ p̂?(κ; δ)− c(1, k)
(p̂?(κ; δ)− c(1, k)) + (q − c(1, k)) ,

which will be satisfied since q = min{c(1, κmax), p̂?}.

Thus, for δ ≥ δ̂(κ; δ), p̂?(κ; δ) can be sustained.

Maximality of p̂?(κ; δ)

It now remains to show that no price higher than p̂?(κ; δ) can be sustained. There are two

cases to consider, depending on whether p̂?(κ; δ) = v or p̂?(κ; δ) < v: In the former case, no

price greater than p̂?(κ; δ) = v can be sustained as no buyer will accept an offer higher than

v.

It is also immediate that we can not construct an equilibrium with a price higher than

p̂?(κ; δ) = (1−δ)ϕ̂
∑

f∈F̂
c(1,κf)−ϕ̂c(1,k)

1−δ−ϕ̂ , since, by construction, under any such price some firm

will have an incentive to slightly underprice and engage in lone production.
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D.4 Proof of Proposition D.1D.1

Let ε be small enough so that c(1, ε) > v. Note that such an ε must exist, as c(1, ε)→∞ as

ε→ 0. Solving for the highest sustainable price when f is present, i.e., solving the problem

given in (44), we obtain

p̂?((κ, κf ); δ) = min

(1− δ)ϕ̂∑f∈F̂ c
(
1, κf

)
− ϕ̂c

(
1, k + κf

)
1− δ − ϕ̂ , v

.

Note as c(1, ε) > v > p̂?((κ, κf ); δ), we have that f /∈ F̂ . Thus,

p̂?((κ, κf ); δ)− p̂?(κ; δ) = min

ϕ̂c(1, k)− c
(
1, k + κf

)
1− δ − ϕ̂ , v − p̂?(κ; δ)

 > 0.

Finally, we need that δ > δ̂((κ, κf ); δ); this might not be true for the ε we have worked with

so far. But as δ̂((κ, κf ); δ) is continuous in κf and δ > δ̂(κ; δ) we have that δ > δ̂((κ, κf ); δ)

for small enough ε—so if necessary, we can take ε still smaller (which preserves c(1, ε) > v),

proving the result.
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