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Firms with multiple divisions often face global
budget constraints that make each division’s
ability to hire contingent on the number of
workers hired by other divisions. For exam-
ple, hospitals must consider how hiring one type
of specialist affects the resources available for
hiring other types. Similarly, collegiate sports
teams often face hard caps on the number of
athletic scholarships they can offer, so offering a
scholarship to a player at a given position leaves
one less scholarship for other positions. And
universities often face trade-offs in hiring across
different academic disciplines.

In this paper, we show how to model firms
with cross-division constraints using the frame-
work of matching with contracts (Kelso and
Crawford, 1982; Hatfield and Milgrom, 2005).
In addition to covering the applications above,
our framework nests the baseline Kamada and
Kojima (2015, 2017) model of matching with
distributional constraints and the Kominers and
Sönmez (2016) model of matching with slot-
specific priorities.

Stable and strategy-proof mechanisms have
proven vital for practical matching applications
(see, e.g., Roth (2008), Pathak and Sönmez
(2008), and Hassidim et al. (2017)). But cross-
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division constraints introduce new complexities
that render prior approaches to proving sta-
bility and strategy-proofness inapplicable (in-
cluding the approaches of Hatfield and Milgrom
(2005), Hatfield and Kojima (2010), Kominers
and Sönmez (2016), and Hatfield and Kominers
(2016)). Nevertheless, we are able to show that
stable and strategy-proof matching is possible
in the presence of cross-division constraints; to
do this, we build upon our recent work (Hatfield
et al., 2016) on observable substitutability.

I. Matching with Contracts

We start with the standard model of many-to-
one matching with contracts: There is a finite
set of doctors D and a finite set of hospitals H.
There is a finite set of contracts X; each x ∈ X
is associated with a doctor d(x) and a hospital
h(x). There may be many contracts for each
doctor–hospital pair. We call a set of contracts
Y ⊆ X an outcome, with d(Y ) ≡ ∪y∈Y {d(y)}
and h(Y ) ≡ ∪y∈Y {h(y)}. For any i ∈ D∪H, we
let Yi ≡ {y ∈ Y : i ∈ {d(y), h(y)}}. We say that
an outcome Y ⊆ X is feasible if |Yd| ≤ 1 for all
d ∈ D.

Each doctor d ∈ D has unit demand over con-
tracts in Xd and an outside option ∅. We denote
the strict preferences of doctor d over Xd ∪ {∅}
by �d. A contract x ∈ Xd is acceptable for
d (with respect to �d) if x �d ∅. We extend
doctor preferences over contracts to preferences
over outcomes in the natural way.

Each hospital h ∈ H, meanwhile, has multi-
unit demand, and is endowed with a choice
function Ch that describes how h would choose
from any offered set of contracts. We assume
throughout that for all Y ⊆ X and all h ∈ H,
the choice function Ch

(1) only selects contracts to which h is a party,
i.e., Ch(Y ) ⊆ Yh,

(2) selects at most one contract with any given
doctor, i.e., Ch(Y ) is feasible, and

(3) satisfies the irrelevance of rejected contracts
condition of Aygün and Sönmez (2013),
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i.e., for all z ∈ X, if z /∈ Ch(Y ∪ {z}),
then Ch(Y ∪ {z}) = Ch(Y ).

For any Y ⊆ X and h ∈ H, we denote by
Rh(Y ) ≡ Y rCh(Y ) the set of contracts that h
rejects from Y .

A. Stability

A feasible outcome A ⊆ X is stable if it is

1) Individually rational : Ch(A) = Ah for all
h ∈ H, and A �d ∅ for all d ∈ D.

2) Unblocked : There does not exist a
nonempty Z ⊆ (X r A) such that Zh ⊆
Ch(A∪Z) for all h ∈ h(Z), and Z �d A for
all d ∈ d(Z).

Our definition of stability requires that no agent
wishes to abrogate one or more contracts unilat-
erally, and that there does not exist a blocking
set Z such that all hospitals and doctors as-
sociated with contracts in Z prefer to sign the
contracts in Z (potentially after dropping some
of their contracts in A).

B. Mechanisms

A mechanism M(·;C) maps preference pro-
files � = (�d)d∈D to outcomes, given a pro-
file of hospital choice functions C = (Ch)h∈H .
Throughout, we assume that the choice func-
tions of the hospitals are fixed and writeM(�)
in place of M(�;C).

A mechanismM is stable ifM(�) is a stable
outcome for every preference profile �. A mech-
anismM is strategy-proof if for every preference
profile �, and for each doctor d ∈ D, there is
no �̂d such that M(�̂d,�Dr{d}) �dM(�).

One set of mechanisms of particular impor-
tance is the class of cumulative offer mecha-
nisms. In a cumulative offer mechanism C`,
doctors propose contracts according to a strict
ordering ` of the elements of X. In every step,
some doctor who does not currently have a con-
tract held by any hospital proposes his most-
preferred contract that has not yet been pro-
posed; then, each hospital chooses its most-
preferred set of contracts according to its choice
function, and holds this set until the next step.
When multiple doctors are available to propose
in the same step, the doctor who actually pro-
poses is determined by the ordering `. The

mechanism terminates when no doctor is able
to propose; at that point, each hospital is as-
signed the set of contracts it is holding. (We
describe cumulative offer mechanisms more for-
mally in Appendix A.)

II. Stable and Strategy-Proof Matching

In recent work (Hatfield et al., 2016), we char-
acterized the conditions on hospital preferences
needed to guarantee the existence of stable and
strategy-proof matching mechanisms. More-
over, we showed that when stable and strategy-
proof matching is possible, the outcome of any
stable and strategy-proof matching mechanism
coincides with that of a cumulative offer mecha-
nism and, in fact, the outcomes of all cumulative
offer mechanisms coincide.

In a range of matching settings, including
many-to-one matching without contracts and
many-to-many matching with contracts, stable
and strategy-proof matching hinges upon two
conditions: substitutability and size monotonic-
ity. A choice function is substitutable if no two
contracts x and z are “complementary” in the
sense that gaining access to x makes z more at-
tractive. That is, Ch is substitutable if for all
contracts x and z and sets of contracts Y , if
z /∈ Ch(Y ∪ {z}), then z /∈ Ch({x} ∪ Y ∪ {z}).
Substitutability is equivalent to monotonicity of
the rejection function: Ch is substitutable if and
only if we have Rh(Y ) ⊆ Rh(Z) for all sets of
contracts Y and Z such that Y ⊆ Z. The choice
function of hospital h ∈ H is size monotonic if
h chooses weakly more contracts whenever the
set of available contracts expands, i.e., if for all
contracts z and sets of contracts Y , we have
|Ch(Y )| ≤ |Ch(Y ∪ {z})|.1

In fact, for a cumulative offer mechanism to
be stable and strategy-proof, substitutability
and size monotonicity need only hold during
the running of the mechanism itself; however,
in that case, we also need to rule out within-
hospital manipulation. Formally, an offer pro-
cess for h is a finite sequence of distinct con-
tracts (x1, . . . , xM) = x such that xm ∈ Xh for
all m = 1, . . . ,M . The offer process x for h
is observable if, for all m = 1, . . . ,M , we have
that d(xm) /∈ d(Ch({x1, . . . , xm−1})); roughly,

1Size monotonicity is often called the Law of Aggregate

Demand (Hatfield and Milgrom, 2005).
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an offer process is observable if it can occur
as a sequence of proposals under a cumulative
offer mechanism. For the offer process x =
(x1, . . . , xM), we let c(x) denote the set of con-
tracts “offered” in x, i.e., c(x) ≡ {x1, . . . , xM}.
DEFINITION 1: The choice function Ch ex-
hibits an observable violation of substi-
tutability if there exists an observable of-
fer process (x1, . . . , xM) for h such that
Rh({x1, . . . , xM−1}) r Rh({x1, . . . , xM}) 6= ∅.
The choice function Ch is observably substi-
tutable if it does not exhibit an observable vi-
olation of substitutability.

DEFINITION 2: The choice function Ch ex-
hibits an observable violation of size mono-
tonicity if there exists an observable of-
fer process (x1, . . . , xM) for h such that
|Ch({x1, . . . , xM})| < |Ch({x1, . . . , xM−1})|.
The choice function Ch is observably size mono-
tonic if it does not exhibit an observable viola-
tion of size monotonicity.

DEFINITION 3: The choice function Ch is
manipulable via contractual terms (absent other
hospitals) if there is a strict ordering ` of Xh,
a preference profile � for doctors under which
only contracts with h are acceptable, a doctor d,
and a preference relation �̂d for d under which
only contracts with h are acceptable such that
C`(�̂d,�−d) �d C`(�).

The preceding three conditions exactly char-
acterize when stable and strategy-proof match-
ing can be guaranteed (Hatfield et al., 2016); we
state the sufficiency result here.

THEOREM 1 (Hatfield et al., 2016): If each
hospital’s choice function Ch is observably sub-
stitutable and observably size monotonic, and
is not manipulable via contractual terms, then
cumulative offer mechanisms are stable and
strategy-proof.

III. Matching with Flexible Allotments

We now introduce a model of hospital choice
in which each hospital has a set of divisions and
a flexible allotment of capacities to those di-
visions that varies as a function of the set of
contracts available. We model a hospital h as
having a set of divisions S = {1, . . . , s̄}.2 Each

2Throughout, for notational simplicity, we suppress the

dependence of Ch’s primitives on the hospital h.

division s ∈ S has an extended choice function
Cs : ℘(X) × Z≥0 → ℘(Xh) that specifies the
contracts s chooses when given a set of contract
offers and an allotment of positions to fill.3 We
require that each division s never chooses more
contracts than its allotment—that is, for a set
of contracts Y ⊆ Xh and allotment a, we must
have |Cs(Y ; a)| ≤ a.

We also model the hospital h as having an
allotment function q : ℘(Xh)→ (Z≥0)S that de-
termines how many positions are allocated to
each division, given the available set of con-
tracts.4 For each division s ∈ S, we let
Cs(·;∞) ≡ Cs(·; |Xh|) be the unconstrained
choice function for s; this function encodes the
“true preferences” of s that arise when the al-
lotment constraint does not bind.

For each division s ∈ S, we require that Cs

satisfies the classical substitutability, size mono-
tonicity, and irrelevance of rejected contracts
conditions when the allotment is held fixed.
That is, we require:

1) For all allotments a, and for all contracts
x, z ∈ X and sets of contracts Y ⊆ X,
if z /∈ Cs(Y ∪ {z}; a), then we have that
z /∈ Cs({x} ∪ Y ∪ {z}; a).

2) For all allotments a, and for all sets of con-
tracts Y,Z ⊆ X such that Y ⊆ Z, we have
that |Cs(Y ; a)| ≤ |Cs(Z; a)|.

3) For all allotments a, and for all contracts
z ∈ X and sets of contracts Y ⊆ X, if
z /∈ Cs(Y ∪ {z}; a), then we have that
Cs(Y ; a) = Cs(Y ∪ {z}; a).

We also impose two conditions on how ex-
tended choice functions respond to changes in
allotments for each division s ∈ S:

1) Extended choice functions are monotone
with respect to the allotment, i.e., for all
sets of contracts Y ⊆ X and allotments
ǎ and â such that ǎ ≤ â, we have that
Cs(Y ; ǎ) ⊆ Cs(Y ; â). Intuitively, the
extended choice function of division s is
monotonic with respect to the allotment
if whenever s chooses a contract under an
allotment ǎ, s still chooses that contract
when given a larger allotment â ≥ ǎ.

3Here, the ℘(X) denotes the power set of X.
4Abusing notation slightly, for a set of contracts Y ⊆ X,

we let q(Y ) ≡ q(Yh).
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2) Extended choice functions are conditionally
acceptant, i.e., for all sets of contracts Y ⊆
X and allotments a, if a ≤ |Cs(Y ;∞)|,
then |Cs(Y ; a)| = a.

Given the extended choice functions Cs for
divisions s ∈ S, as well as the allotment func-
tion q, we calculate the choice of h from a set
of contracts Y ⊆ X according to the following
choice procedure:

Step 0: Initialize the set of available contracts
as Y 1 ≡ Y .

Step s: Division s chooses up to qs(Y ) con-
tracts from the set of contracts Y s still
available; then all contracts with doctors
chosen by s are made unavailable to other
divisions. That is, let Gs ≡ Cs(Y s; q

s(Y ))
and then let the set of contracts available
to division s + 1 be given by Y s+1 ≡
Y s r {y ∈ Y s : d(y) ∈ Gs}.

Step s̄ + 1: The choice of h is then given by
Ch(Y ) ≡ ∪s∈SG

s.

Throughout, we use Y s to denote the set of
contracts available to division s at its step in
the computation of Ch(Y ). Similarly, for an
offer process x, we let c s(x) denote the set of
contracts available to division s at its step in
the computation of Ch(c(x)).

We assume throughout that the allotment
function does not depend on irrelevant con-
tracts, i.e., for every set of contracts Y , if Z ⊆
Rh(Y ), then q(Y rZ) = q(Y ). We also impose
throughout three substantive conditions on the
allotment function q:

1) The allotment function does not not ob-
servably grant excess positions. That is, for
every observable offer process x and every
division s ∈ S, we have

qs(c(x)) = |Cs(c s(x); qs(c(x)))|,

so that each division s exactly fills its al-
lotment of slots out of c(x).

2) The allotment function is single-peaked
across observable offer processes. That is,
for any observable offer processes x and y
such that c(x) ⊆ c(y), the allotment of di-
vision s for y strictly increases from the

allotment for x only if division s was un-
constrained under x—formally, qs(c(y)) >
qs(c(x)) only if |Cs(c s(x);∞)| = qs(x).5

3) The allotment function is monotone in ag-
gregate across observable offer processes.
That is, for any observable offer processes
x and y such that c(x) ⊆ c(y), we have
that

∑
s∈S q

s(c(x)) ≤
∑

s∈S q
s(c(y)).

If a hospital h has a choice function that can
be represented by a set of divisions S and an
allotment function q such that

• each division’s extended choice function is
substitutable and size monotonic, satisfies
the irrelevance of rejected contracts condi-
tion for any allotment, and, moreover, is
monotonic with respect to the allotment
and conditionally acceptant, and

• the allotment function neither depends on
irrelevant contracts nor observably grants
excess positions, and is both single-peaked
and monotone in aggregate across observ-
able offer processes,

then we say that h has a multi-division choice
function with flexible allotments. Roughly,
multi-division choice functions with flexible al-
lotments model settings in which each hospi-
tal, upon hiring a candidate into a given divi-
sion, may have to reduce the number of posi-
tions it allots to other divisions (e.g., because
of hospital-wide budget constraints).

Multi-division choice functions with flexible
allotments satisfy the three key conditions we
introduced in Section II.

THEOREM 2: If hospital h has a multi-
division choice function with flexible allotments,
then the choice function of h is observably sub-
stitutable, observably size monotonic, and non-
manipulable via contractual terms, and also sat-
isfies the irrelevance of rejected contracts condi-
tion.6

Combined with Theorem 1, Theorem 2 shows
that matching with flexible allotments allows for
stable and strategy-proof matching.

5We refer to this property as a form of “single-peakedness”

because, when combined with the no excess positions condi-
tion, it implies that when an observable offer process is ex-
panded, the allotment for s is first (weakly) increasing and

then (weakly) decreasing.
6The proof of this result is in Appendix B.
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COROLLARY 1: If every hospital has a multi-
division choice function with flexible allotments,
then cumulative offer mechanisms are stable
and strategy-proof.

To obtain Corollary 1, we in fact need the full
generality of the sufficient conditions of Hatfield
et al. (2016), as multi-division choice functions
with flexible allotments fail in general to satisfy
the weakest prior conditions known to ensure
stable and strategy-proof matching.7

IV. Discussion

Matching with flexible allotments allows us
to model firms with cross-division hiring con-
straints. Moreover, the flexible allotments
framework may be useful in understanding sta-
ble and strategy-proof matching in settings with
distributional constraints (see, e.g., Sönmez and
Switzer (2013) and Aygün and Turhan (2017)).
For a start, we show in Appendix D that our
model nests the baseline regional caps model
of Kamada and Kojima (2015, 2017); more-
over, our framework straightforwardly embeds
models of matching with reserves and quotas,
such as the slot-specific priorities framework of
Kominers and Sönmez (2016).

Our work here illustrates the value of clearly
mapping when stable and strategy-proof match-
ing is possible—our theory of observable substi-
tutability allows us to efficiently demonstrate
that matching with flexible allotments ad-
mits stable and strategy-proof matching, even
though it falls outside the purview of previous
work.

REFERENCES

Aygün, Orhan and Bertan Turhan,
“Large Scale Affirmative Action in School
Choice: Admissions to IITs and its Matching-
Theoretical Problems,” American Economic
Review Papers & Proceedings, 2017.

Aygün, Orhan and Tayfun Sönmez,
“Matching with Contracts: Comment,”
American Economic Review, 2013, 103 (5),
2050 – 2051.

7In Appendix C, we show that Example 2 of Hatfield et al.

(2016) can be expressed in our model; this proves that there
exists a multi-division choice function with flexible allotments
that does not satisfy the substitutable completability condi-

tion of Hatfield and Kominers (2016).

Hassidim, Avinatan, Assaf Romm, and
Ran I. Shorrer, “Redesigning the Israeli
Psychology Master’s Match,” American Eco-
nomic Review Papers & Proceedings, 2017.

Hatfield, John William and Fuhito Ko-
jima, “Substitutes and Stability for Match-
ing with Contracts,” Journal of Economic
Theory, 2010, 145 (5), 1704–1723.

and Paul Milgrom, “Matching with Con-
tracts,” American Economic Review, 2005, 95
(4), 913–935.

and Scott Duke Kominers, “Hidden Sub-
stitutes,” 2016. Working paper.

, , and Alexander Westkamp, “Stabil-
ity, Strategy-Proofness, and Cumulative Of-
fer Mechanisms,” 2016. Working paper.

Kamada, Yuichiro and Fuhito Kojima,
“Efficient Matching under Distributional
Constraints: Theory and Applications,”
American Economic Review, 2015, 105 (1),
67–99.

and , “Recent Developments in Matching
with Constraints,” American Economic Re-
view Papers & Proceedings, 2017.

Kelso Jr., Alexander S. and Vincent P.
Crawford, “Job Matching, Coalition Forma-
tion, and Gross Substitutes,” Econometrica,
1982, 50 (6), 1483–1504.

Kominers, Scott Duke and Tayfun
Sönmez, “Matching with Slot-Specific Prior-
ities: Theory,” Theoretical Economics, 2016,
11 (2), 683–710.

Pathak, Parag A. and Tayfun Sönmez,
“Leveling the Playing Field: Sincere and
Sophisticated Players in the Boston Mecha-
nism,” American Economic Review, 2008, 98
(4), 1636–1652.

Roth, Alvin E., “Deferred Acceptance Algo-
rithms: History, Theory, Practice, and Open
Questions,” International Journal of Game
Theory, 2008, 36 (3-4), 537–569.

Sönmez, Tayfun and Tobias B. Switzer,
“Matching with (Branch-of-Choice) Con-
tracts at United States Military Academy,”
Econometrica, 2013, 81 (2), 451–488.



Stable and Strategy-Proof Matching with Flexible Allotments
Online Appendix

By John William Hatfield, Scott Duke Kominers, and Alexander Westkamp

1



A. The Cumulative Offer Mechanism

In this appendix, we formally define the cumulative offer mechanisms described in Section I.B.
For any preference profile �, the outcome of the cumulative offer mechanism according to the
strict ordering ` of the elements of X, denoted by C`(�), is determined by the cumulative offer
process with respect to ` and � as follows:

Step 0: Initialize the set of contracts available to the hospitals (at the end of step 0) as A0 = ∅,
and initialize the set of contracts held by hospitals (at the end of step 0) as L0 = ∅.

Step k ≥ 1: Consider the set

Uk ≡ {x ∈ X rAk−1 : d(x) /∈ d(Lk−1) and @z ∈ (Xd(x) rAk−1) ∪ {∅} such that z �d(x) x},

which consists of those contracts not yet available to hospitals that are most-preferred by
doctors who do not have contracts currently held by any hospital.

• If Uk is not empty, we let yk be the highest-ranked element of Uk according to `. Doctor
d(yk) proposes yk, making it available to h(yk). We update the set of available contracts
to Ak = Ak−1 ∪ {yk}; then, the hospitals hold Lk = ∪h∈HC

h(Ak), and we proceed to step
k + 1.

• If Uk is empty, then the cumulative offer process terminates and the outcome is given by
Lk−1.1

We let K denote the last proposal step of the cumulative offer process with respect to ` and
�, and call AK the set of contracts observed in the cumulative offer process with respect to `
and �.

Note that the sequence (y1, . . . , yK) of contracts proposed in the cumulative offer process with
respect to ` and � is, in fact, an observable offer process (for all hospitals h). Indeed, for each
proposed contract yk ∈ Uk, we have

d(yk) /∈ d(Lk−1) = d(∪h∈HC
h(Ak−1)) = d(∪h∈HC

h({y1, . . . , yk−1})),

as is required for observability. Even so, however, without further assumptions on hospitals’
choice functions, the outcome of a cumulative offer process need not be feasible, i.e., it might be
the case that LK = ∪h∈HC

h(AK) contains more than one contract with a given doctor.

B. Proof of Theorem 2

In this appendix, we prove our main result, Theorem 2.

B1. Preliminaries

We adapt the notation of Hatfield et al. (2016). For an offer process x = (x1, . . . , xM), we
denote the offer process (x1, . . . , xm) by xm.2 For an offer process x = (x1, . . . , xM), we (somewhat
informally) think of x as representing a sequence of proposals by doctors in a cumulative offer
process (see Appendix A). With that intuition, we may think of hospital h as evaluating the set
of contracts c(xm) “available” at “step” m of the offer process; under a multi-division choice
function with flexible allotments Ch, this implicitly involves each division s ∈ S evaluating
c s(x

m), the subset of c(xm) that s has the opportunity to consider in the computation of

1Note that if Uk is empty, all doctors who currently do not have a contract on hold have already proposed all the contracts

they find acceptable.
2In particular, we use the convention that x0 represents the empty sequence.
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Ch(c(xm)). In the sequel, it is useful for us to track the full set of contract offers that are ever
considered by s in this way by step m; we call this set, f s(x) ≡ ∪m≤Mc s(x

m), the set of
contracts that division s has access to at some step of the offer process.

Additionally, for each division s ∈ S we define an extended rejection function

Rs(Y ; a) ≡ Y r Cs(Y ; a),

which specifies the contracts s does not choose when given a set of contract offers Y and an
allotment of positions a. We note that when Cs(·; a) is substitutable, Rs(·; a) is isotone.

B2. Observable Substitutability

We show first that the choice of division s at the end of an observable offer process x, i.e.,
Cs(c s(x); qs(c(x))), coincides with the choice by s from the union of its opportunity sets along
the observable offer process, i.e., Cs(f s(x); qs(c(x))). Moreover, for any observable offer process
y such that every contract offered during x is offered during y (i.e., c(x) ⊆ c(y)) we have that
any contract rejected by division s when c(x) is available to h is also rejected by s when c(y) is
available to h.

CLAIM 1: If x is an observable offer process, then for each division s ∈ S,

Cs(c s(x); qs(c(x))) = Cs(f s(x); qs(c(x))).(B1)

Furthermore, if y is an observable offer process such that c(x) ⊆ c(y), and f s(x) ⊆ f s(y) for
some division s ∈ S, then

Rs(f s(x); qs(c(x))) ⊆ Rs(f s(y); qs(c(y))).(B2)

PROOF:
We fix an observable offer process x = (x1, . . . , xM). We proceed by induction on pairs (m, s)

in the order

(1, 1), (1, 2), . . . , (1, s̄), (2, 1), (2, 2), . . . , (2, s̄), . . . , (M, 1), (M, 2), . . . , (M, s̄),

showing at each step that

Cs(c s(x
m); qs(c(xm))) = Cs(f s(x

m); qs(c(xm))),(B3a)

Cs(f s(x
m); qs(c(xm))) ⊆ Cs(c s(x

m−1); qs(c(xm−1))) ∪ [c s(x
m) r c s(x

m−1)],(B3b)

Cs(c s(x
m−1); qs(c(xm−1))) ⊆ c s(x

m),(B3c)

Rs(f s(x
m); qs(c(xm))) ⊆ Rs(f s(y); qs(c(y)))(B3d)

for all observable offer processes y such that c(xm) ⊆ c(y) and divisions s such that f s(x
m) ⊆

f s(y). Taking m = M then provides the desired results via (B3a) and (B3d).

Base Case(s). For m = 1, conditions (B3a), (B3b), and (B3c) follow immediately for all s ∈ S.
Condition (B3d) follows using the same argument as we use in the general (m, s) case infra.

Inductive Step. We now show that (B3) holds for (m, s) if (B3) holds for

• every pair (m̂, t) with m̂ < m and t ∈ S, as well as

• every pair (m, t) with t < s.

Condition (B3c). First, we note that the result is immediate if s = 1, as c 1(xm−1) = c(xm−1) ⊆
c(xm) = c 1(xm). Thus, we consider any contract z chosen by division s > 1 at step m − 1,
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that is, any z ∈ Cs(c s(x
m−1); qs(c(xm−1))). Under the choice procedure defining Ch, since

z ∈ c s(x
m−1), it must be that no contract with d(z) is chosen by any division t < s at

step m− 1, i.e.,

[c(xm−1)]d(z) ⊆
⋂
t<s

Rt(c t(x
m−1); qt(c(xm−1))).

Moreover, conditions (B3a) and (B3b) together imply that for each t < s,

Ct(c t(x
m); qt(c(xm))) ⊆ Ct(c t(x

m−1); qt(c(xm−1))) ∪ [c t(x
m) r c t(x

m−1)].

Hence, we have

[c(xm−1)]d(z) ⊆
⋂
t<s

Rt(c t(x
m); qt(c(xm))),(B4)

i.e., it must be that no contract with d(z)—except possibly xm—is chosen by any division t < s
at step m. But since xm is observable and z ∈ Cs(c s(x

m−1); qs(c(xm−1))), it must be that
d(z) 6= d(xm). Thus, (B4) implies

[c(xm)]d(z) ⊆
⋂
t<s

Rt(c t(x
m); qt(c(xm))),

that is, no contract with d(z) is chosen by any division t < s at step m. Thus, any contract
proposed by d(z)—and, in particular, z—is available to s at step m. Therefore, since z was an
arbitrary element of Cs(c s(x

m−1); qs(c(xm−1))), we have that Cs(c s(x
m−1); qs(c(xm−1))) ⊆

c s(x
m), as desired.

Condition (B3b). Taking y = xm in condition (B3d) for (m− 1, s), we obtain

Rs(f s(x
m−1); qs(c(xm−1))) ⊆ Rs(f s(x

m); qs(c(xm))),

which implies that

Cs(f s(x
m); qs(c(xm))) ⊆ Cs(f s(x

m−1); qs(c(xm−1))) ∪ [f s(x
m) r f s(x

m−1)].

Since f s(x
m) = ∪n≤mc s(x

n) and f s(x
m−1) = ∪n≤m−1c s(x

n) by definition, we have

f s(x
m) r f s(x

m−1) = [∪n≤mc s(x
n)] r [∪n≤m−1c s(x

n)]

= [c s(x
m) r [∪n≤m−1c s(x

n)]] ∪ [[∪n≤m−1c s(x
n)] r [∪n≤m−1c s(x

n)]]

= [c s(x
m) r [∪n≤m−1c s(x

n)]] ∪∅
⊆ c s(x

m) r c s(x
m−1).

Combining the two immediately preceding expressions yields

(B5) Cs(f s(x
m); qs(c(xm))) ⊆ Cs(f s(x

m−1); qs(c(xm−1))) ∪ [c s(x
m) r c s(x

m−1)].

Now, since condition (B3a) holds for (m− 1, s), we have that

(B6) Cs(c s(x
m−1); qs(c(xm−1))) = Cs(f s(x

m−1); qs(c(xm−1))).

Combining (B5) and (B6) implies that

Cs(f s(x
m); qs(c(xm))) ⊆ Cs(c s(x

m−1); qs(c(xm−1))) ∪ [c s(x
m) r c s(x

m−1)],
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as desired.

Condition (B3a). Condition (B3b) for (m, s) implies that

Cs(f s(x
m); qs(c(xm))) ⊆ Cs(c s(x

m−1); qs(c(xm−1))) ∪ [c s(x
m) r c s(x

m−1)];

condition (B3c) implies that Cs(c s(x
m−1); qs(c(xm−1))) ⊆ c s(x

m), and so

Cs(f s(x
m); qs(c(xm))) ⊆ c s(x

m).

Since f s(x
m) ⊇ c s(x

m), the fact that the extended choice function of division s satisfies the
irrelevance of rejected contracts condition then implies that

Cs(f s(x
m); qs(c(xm))) = Cs(c s(x

m); qs(c(xm))),

as desired.

Condition (B3d). Suppose that y is an observable offer process such that c(xm) ⊆ c(y) and
f s(x

m) ⊆ f s(y) for some s ∈ S. There are two cases to consider:

Case 1: qs(c(xm)) ≥ qs(c(y)). Since f s(x
m) ⊆ f s(y), the substitutability of the extended

choice function of division s implies that Rs(c(xm); qs(c(xm))) ⊆ Rs(c(y); qs(c(xm))).
Since qs(c(xm)) ≥ qs(c(y)) and the extended choice function of s is monotonic with
respect to the allotment, we have Rs(c(y); qs(c(xm))) ⊆ Rs(c(y); qs(c(y))) and so

(B7) Rs(c(xm); qs(c(xm))) ⊆ Rs(c(y); qs(c(y))),

as desired.

Case 2: qs(c(xm)) < qs(c(y)). We first show that

Cs(f s(x
m); qs(c(xm))) = Cs(f s(x

m);∞).(B8)

To show (B8), we suppose the contrary—i.e., that Cs(f s(x
m); qs(c(xm))) 6=

Cs(f s(x
m);∞)—and seek a contradiction. Now, if Cs(f s(x

m); qs(c(xm))) 6=
Cs(f s(x

m);∞), then, as the extended choice function of s is monotonic with respect
to the allotment, we must have Cs(f s(x

m); qs(c(xm))) ( Cs(f s(x
m);∞). We let

z ∈ Cs(f s(x
m);∞) r Cs(f s(x

m); qs(c(xm))). As z ∈ f s(x
m), there must exist some

largest m̄ ≤ m such that z ∈ c s(x
m̄). There are then two subcases to consider:

If m̄ = m, then since condition (B3a) holds for (m, s), we must have that
Cs(c s(x

m); qs(c(xm))) = Cs(f s(x
m); qs(c(xm))). As z /∈ Cs(f s(x

m); qs(c(xm)))
and z ∈ c s(x

m), we then have that

z ∈ Rs(c s(x
m); qs(c(xm))).

As the allotment function is single-peaked across observable offer processes and
qs(c(xm)) < qs(c(y)), we have that Rs(c s(x

m); qs(c(xm))) = Rs(c s(x
m);∞);

in particular, z ∈ Rs(c s(x
m);∞). Thus, as the extended choice function of s

is substitutable, we have z ∈ Rs(f s(x
m);∞), contradicting our assumption that

z ∈ Cs(f s(x
m);∞).

If m̄ < m, then z /∈ c s(x
m̄+1), as we chose m̄ to be the largest m̄ ≤ m such that

z ∈ c s(x
m̄). Thus, z ∈ Rs(c s(x

m̄); qs(c s(x
m̄))), as otherwise condition (B3c) is

violated. As the allotment function is single-peaked across observable offer processes
and qs(c(xm)) < qs(c(y)), we have that Rs(c s(x

m̄); qs(c(xm̄))) = Rs(c s(x
m̄);∞);

in particular, z ∈ Rs(c s(x
m̄);∞). Thus, as the extended choice function of s is
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substitutable, z ∈ Rs(f s(x
m̄);∞). Then, again as the extended choice function of

s is substitutable, we must have z ∈ Rs(f s(x
m);∞), contradicting our assumption

that z ∈ Cs(f s(x
m);∞).

The preceding argument shows (B8), which implies that Rs(f s(x
m); qs(c(xm))) =

Rs(f s(x
m);∞). The substitutability of the extended choice function of s then implies

that Rs(f s(c(xm)); qs(∞)) ⊆ Rs(f s(y);∞), and so

Rs(f s(c(xm)); qs(c(xm))) ⊆ Rs(f s(y);∞).

Finally, the monotonicity of the extended choice function of s with respect to allotment
(i.e., Rs(f s(y);∞) ⊆ Rs(f s(y); qs(c(y)))) implies (B7) in this case too, completing our
induction.

We now show that the choice function of h is observably substitutable.

CLAIM 2: The choice function Ch is observably substitutable.

PROOF:
We consider an observable offer process x = (x1, . . . , xM) and let y ∈ Rh({x1, . . . , xM−1}).

Under the choice procedure defining Ch, since y ∈ Rh({x1, . . . , xM−1}), we have that y ∈
Rs(c s(x

M−1); qs(c(xM−1))) for each s ∈ S. The substitutability of the extended choice func-
tion of each s ∈ S then implies that y ∈ Rs(f s(x

M−1); qs(c(xM−1))) for each s ∈ S. Since
f s(x

M−1) ⊆ f s(x
M) by construction, (B2) of Claim 1 implies that y ∈ Rs(f s(x

M); qs(c(xM)))
for each s ∈ S. Thus, y /∈ Cs(f s(x

M); qs(c(xM))) for each s ∈ S; (B1) of Claim 1 then implies
that y /∈ Cs(c s(x

M); qs(c(xM))) for each s ∈ S. Thus, under the choice procedure defining Ch,
we have that y ∈ Rh({x1, . . . , xM}), as desired.

B3. Observable Size Monotonicity

Next, we show that the choice function Ch is observably size monotonic across observable offer
processes.

CLAIM 3: The choice function Ch is observably size monotonic.

PROOF:
Consider any two observable offer process x and x̂ such that c(x) ⊆ c(x̂). As the allotment func-

tion does not observably grant excess positions, we have that qs(c(x)) = |Cs(c s(x); qs(c(x)))|
for each division s ∈ S, which implies that

∑
s∈S q

s(c(x)) =
∑

s∈S |Cs(c s(x); qs(c(x)))|. Simi-
larly, we have that

∑
s∈S q

s(c(x̂)) =
∑

s∈S |Cs(c s(x̂); qs(c(x̂)))|. Now, as the allotment function
is monotone in aggregate across observable offer processes, we have that∑

s∈S

qs(c(x)) ≤
∑
s∈S

qs(c(x̂));

hence, we have

|Ch(c(x))| =
∑
s∈S

|Cs(c s(x); qs(c(x)))| ≤
∑
s∈S

|Cs(c s(x̂); qs(c(x̂)))| = |Ch(c(x̂))|,

so the choice function Ch is observably size monotonic, as desired.

B4. (Non-)Manipulability via Contractual Terms

We now establish that Ch is non-manipulable via contractual terms. Consider an arbitrary
doctor d ∈ D, and let z0, z1, . . . , zN be an arbitrary sequence of contracts in Xd. Fix a profile of
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preferences �Dr{d} for all other doctors, and let �d and �̂d be given by

�d : z1 �d . . . �d z
N ,(B9)

�̂d : z0 �̂d z
1 �̂d . . . �̂d z

N .(B10)

We fix an ordering ` over the set of contracts X, and let x = (x1, . . . , xM) be the observable
offer process induced by the cumulative offer mechanism with ordering ` under the preferences

(�d,�Dr{d}) when only hospital h is present. Similarly, let x̂ = (x̂1, . . . , x̂M̂) be the observable
offer process induced by the cumulative offer mechanism with ordering ` under the preferences
(�̂d,�Dr{d}) when only hospital h is present. We first establish the following claim.

CLAIM 4: If z0 /∈ Ch(c(x̂)), then

Rh(c(x)) ⊆ Rh(c(x̂))(B11)

and, for all s ∈ S, we have that

f s(x) ⊆ f s(x̂).(B12)

PROOF:
We proceed by induction on pairs (m, s) in the order

(1, 1), (1, 2), . . . , (1, s̄), (2, 1), (2, 2), . . . , (2, s̄), . . . , (M, 1), (M, 2), . . . , (M, s̄),

showing at each step that

f s(x
m) ⊆ f s(x̂),(B13a)

Rs(f s(x
m); qs(c(xm))) ⊆ Rs(f s(x̂); qs(c(x̂))).(B13b)

Once we have completed our induction, (B12) follows from taking m = M .
For the base case (1, 1), it must be the case that x1 is either the highest-ranked contract

by some doctor d(x1) 6= d or x1 = z1. In the former case, x1 must be offered at some step
in the offer process x̂, as it is the favored contract of doctor d(x1). In the latter case, since
z0 is rejected by h by assumption, d must offer his second-favorite contract under �̂d, i.e., x1,
at some step in the offer process x̂. Hence, in both cases we have that x1 ∈ c(x̂). Since
f 1(x̂) = c(x̂), we obtain that f 1(x1) ⊆ f 1(x̂). Then, condition (B2) of Claim 1 implies that
R1(f 1(x1); q1(c(x1))) ⊆ R1(f 1(x̂); q1(c(x̂))).

We now show that (B13) holds for (m, s) if (B13) holds for

• every pair (m̄, t) with m̄ < m and t ∈ S, as well as

• every pair (m, t) with t < s.

We show first that (B13) holds for (m, 1) given that (B13) holds for every pair (m̄, t) with
m̄ < m and t ∈ S. By the inductive assumption (B13b) for pairs (m− 1, t), we have

Rt(f t(x
m−1); qt(c(xm−1))) ⊆ Rt(f t(x̂); qt(c(x̂)))

for all t. As xm is observable, we have that {x1, . . . , xm−1}d(xm) ⊆ Rt(c t(x
m−1); qt(c(xm−1)))

for all t. Moreover, as Rt(·; qt(c(xm−1))) is substitutable, we have Rt(c t(x
m−1); qt(c(xm−1))) ⊆

Rt(f t(x
m−1); qt(c(xm−1))), so that

{x1, . . . , xm−1}d(xm) ⊆ Rt(c t(x
m−1); qt(c(xm−1))) ⊆ Rt(f t(x

m−1); qt(c(xm−1))).
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Hence, given that Rt(f t(x
m−1); qt(c(xm−1))) ⊆ Rt(f t(x̂); qt(c(x̂))) for all t, we find that

{x1, . . . , xm−1}d(xm) ⊆ Rt(f t(x̂); qt(c(x̂))) for all t.

By Condition (B1) of Claim 1, we see that there is an M ′ ≤ M̂ such that {x1, . . . , xm−1}d(xm) ⊆
Rt(c t(x̂

M ′
); qt(c(x̂M ′

))) for all t. Since x̂ is observable and represents all the offers made under
the cumulative offer process for (�̂d,�Dr{d}), there must exist some step m̂ at which xm is
proposed in x̂; hence, recalling that c(x̂) = f 1(x̂), we have that

xm ∈ c(x̂) = f 1(x̂).(B14)

Additionally, by the inductive assumption (B13a) for m− 1 and s = 1, we have that

c(xm−1) = f 1(xm−1) ⊆ f 1(x̂).(B15)

Moreover, recalling that f 1(xm) = c(xm) and c(xm) = {xm} ∪ c(xm−1), we have that

f 1(xm) = c(xm) = {xm} ∪ c(xm−1).(B16)

Combining (B14) and (B15) with (B16) then implies that f 1(xm) ⊆ f 1(x̂), which is
exactly condition (B13a) for (m, 1). Applying condition (B2) of Claim 1 yields that
R1(f 1(xm); q1(c(xm))) ⊆ R1(f 1(x̂); q1(c(x̂))), i.e., condition (B13b) for (m, 1).

We now show that (B13) holds for (m, s) when s > 1, given that (B13) holds for every pair (m̄, t)
with m̄ < m and t ∈ S and every pair (m, t) with t < s. We argue first that f s(x

m) ⊆ f s(x̂).
By our inductive assumption on (m − 1, s), it is sufficient to show that c s(x

m) ⊆ f s(x̂), as
f s(x

m) = f s(x
m−1) ∪ c s(x

m). Let y ∈ c s(x
m) be arbitrary. Since y ∈ c s(x

m), under the
choice procedure defining Ch, we must have that

(B17) y ∈
⋂
t<s

Rt(c t(x
m); qt(c(xm))).

As each extended choice function Ct is substitutable, (B17) implies that

(B18) y ∈
⋂
t<s

Rt(f t(x
m); qt(c(xm))).

Now, by the inductive assumption (B13b) on pairs (m, t) for t < s, we have that
Rt(f t(x

m); qt(c(xm))) ⊆ Rt(f t(x̂); qt(c(x̂))) for all t < s. Hence, (B18) implies that

(B19) y ∈
⋂
t<s

Rt(f t(x̂); qt(c(x̂))).

Applying condition (B1) of Claim 1 to x̂, we have that Ct(c t(x̂); qt(c(x̂))) = Ct(f t(x̂); qt(c(x̂)))
for all t. Thus, if there were a t < s such that y ∈ Ct(c t(x̂); qt(c(x̂))), we would have y ∈
Ct(f t(x̂); qt(c(x̂))), contradicting (B19). Hence, we must have

y ∈
⋂
t<s

Rt(c t(x̂); qt(c(x̂))).

Thus, there must exist some step m̂ of the offer process x̂ such that y ∈ c s(x̂
m̂), and so

y ∈ f s(x̂
m̂) ⊆ f s(x̂); hence, we see that f s(x

m) ⊆ f s(x̂), i.e., we have condition (B13a)
for (m, s). Applying condition (B2) of Claim 1 then gives that Rs(f s(x

m); qs(c(xm))) ⊆
Rs(f s(x̂); qs(c(x̂)))—condition (B13b) for (m, s). Having thus completed our induction, we
have proven (B12).
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Finally, we prove (B11), i.e., that Rh(c(x)) ⊆ Rh(c(x̂)). Suppose by way of contradiction that
there exists some y ∈ Rh(c(x))rRh(c(x̂)). We have already shown (B12), that f s(x) ⊆ f s(x̂)
for all s ∈ S; in particular,

y ∈ c(x) = f 1(xm) ⊆ f 1(x̂) = c(x̂).

Thus, as y /∈ Rh(c(x̂)), we must have that y ∈ Ch(c(x̂)). Therefore, there exists some division s ∈
S such that y ∈ Cs(c s(x̂); qs(x̂)); by (B1) of Claim 1, we have that y ∈ Cs(f s(x̂); qs(x̂))
and so y /∈ Rs(f s(x̂); qs(x̂)). By (B2) of Claim 1, since c(x) ⊆ c(x̂), we then have that
y /∈ Rs(f s(x); qs(x)). But as the extended choice function of s is substitutable, we must then
have that y /∈ Rs(c s(x); qs(x))—but this can only be the case if s or some division t < s chooses
y, which would contradict the assumption that y ∈ Rh(c(x)).

CLAIM 5: The choice function Ch is not manipulable via contractual terms.

PROOF:
By Proposition 5 of Hatfield et al. (2016), it is sufficient to show that when h is the only

hospital, the following two conditions hold:

1) If [C(�d,�Dr{d})]d = ∅, then either [C(�̂d,�Dr{d})]d = ∅ or [C(�̂d,�Dr{d})]d = {z0}, and

2) if [C(�̂d,�Dr{d})]d = ∅, then [C(�d,�Dr{d})]d = ∅.3

To show the first condition, we note that Claim 4 implies that if [C(�d,�Dr{d})]d = ∅
and z0 /∈ C(�̂d,�Dr{d}), then Rh(c(x)) ⊆ Rh(c(x̂)). Moreover, if [C(�d,�Dr{d})]d = ∅,
then {z1, . . . , zN} ⊆ Rh(c(x)), and so combining the preceding two observations, we have that
{z1, . . . , zN} ⊆ Rh(c(x̂)); hence [C(�̂d,�Dr{d})]d = ∅.

To show the second condition, note that by Proposition 1 of Hatfield et al. (2016), since
the choice function of h is observably substitutable (Claim 2) and observably size monotonic
(Claim 3), the cumulative offer mechanism outcome is order-independent. Thus we can consider
x and x̂ to be generated by cumulative offer processes with respect to the proposal ordering `
in which all of the contracts associated with doctors other than d precede all of the contracts
associated with d, i.e., if x ∈ Xd and y ∈ XDr{d}, then y ` x.

Under our choice of `, there must exist an m̄ such that

1) xm = x̂m for all m < m̄,

2) xm̄ = z1, and

3) x̂m̄ = z0;

specifically, m̄ is the first step of each cumulative offer process (with respect to `) at which d
proposes. Additionally, at each step after m̄, exactly one contract is newly rejected and the offer
process x̂ must end with the contract zN being rejected, as

• zN follows all contracts with doctors other than d under `,

• the choice function of h is observably substitutable,

• the choice function of h is observably size monotonic, and

• we have assumed that [C(�̂d,�Dr{d})]d = ∅.

Thus, we must have that

1) |Rh(c(x̂m̂)) rRh(c(x̂m̂−1))| = 1 for all m̂ ∈ {m̄, m̄+ 1, . . . , M̂}, and

3Here, we use the notation introduced in (B9).
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2) zN ∈ Rh(c(x̂M̂)) rRh(c(x̂M̂−1)).

Similarly, for the offer process x, we must have |Rh(c(xm)) r Rh(c(xm−1))| = 1 for all m ∈
{m̄, m̄+ 1, . . . ,M − 1}.

Since xm̄−1 = x̂m̄−1, we have that |Ch(c(xm̄−1))| = |Ch(c(x̂m̄−1))|. Moreover, since

|Rh(c(x̂m̂)) r Rh(c(x̂m̂−1))| = 1 for all m̂ ∈ {m̄, m̄ + 1, . . . , M̂} (as we have just shown), we

have that |Ch(c(xm̄−1))| = |Ch(c(x̂M̂))|. Likewise, since |Rh(c(xm)) r Rh(c(xm−1))| = 1 for

m ∈ {m̄, m̄+ 1, . . . ,M −1} (as we have just shown), we have that |Ch(c(xM−1))| = |Ch(c(x̂M̂))|.
But since c(xM) ⊆ c(x̂M̂), the observable size monotonicity of Ch implies that |Ch(c(xM))| ≤
|Ch(c(x̂M̂))|. Thus, we must have

(B20) Rh(c(xM)) rRh(c(xM−1)) 6= ∅.

Now, given (B20), suppose by way of contradiction that y ∈ Rh(c(xM))rRh(c(xM−1)) 6= ∅ is
not the contract zN , and so is the least preferred acceptable contract with respect to �d(y), where
d(y) 6= d. Claim 4 then implies there is some step m̂ ≥ m̄ such that y ∈ Rh(c(x̂m̂))rRh(c(x̂m̂−1)).
But, since |Rh(c(x̂m̂)) r Rh(c(x̂m̂−1))| = 1, and y is the least preferred acceptable contract for
d(y), the cumulative offer process for (�̂d,�Dr{d}) would end at m̂ with the rejection of y,
contradicting the fact that it ends with the rejection of zN .

B5. Irrelevance of Rejected Contracts

Finally, we show that the choice function Ch satisfies the irrelevance of rejected contracts
condition.

CLAIM 6: The choice function Ch satisfies the irrelevance of rejected contracts condition.

PROOF:
We suppose that z and Y are such that z ∈ Rh(Y ∪ {z}). If z ∈ Rh(Y ∪ {z}), then we must

have

(B21) z /∈ Cs([Y ∪ {z}] s; q
s(Y ∪ {z}))

for each division s. Moreover, since each extended choice function Cs satisfies the irrelevance of
rejected contracts condition, (B21) implies that

(B22) Cs([Y ∪ {z}] s; q
s(Y ∪ {z})) = Cs(Y s; q

s(Y ∪ {z}))

for all divisions s.
As the allotment function does not depend on irrelevant contracts, we have that q(Y ∪ {z}) =

q(Y ). Thus, we have

(B23) Cs([Y ∪ {z}] s; q
s(Y ∪ {z})) = Cs([Y ∪ {z}] s; q

s(Y )).

Combining (B22) and (B23) shows that

Cs([Y ∪ {z}] s; q
s(Y ∪ {z})) = Cs(Y s; q

s(Y ))

for all divisions s; it follows that Ch(Y ∪ {z}) = Ch(Y ).

C. A Multi-Division Choice Function with Flexible Allotments That Is Not Substitutably
Completable

In many application contexts with non-substitutable preferences, stable and strategy-proof
matching can be guaranteed by showing that each hospital’s choice function is substitutably
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completable in the sense of Hatfield and Kominers (2016). However, our main result (Theorem 2)
can not be demonstrated by using substitutable completability arguments; to prove this, we show
in this appendix that there is a multi-division choice function with flexible allotments that is not
substitutably completable.

Specifically, we give a multi-division choice function with flexible allotments that expresses
the preferences introduced in Example 2 of Hatfield et al. (2016). First, we recall the setting:
H = {h}, D = {d, e, f}, and X = {x, y, z, x̂, ẑ}, with h(x) = h(y) = h(z) = h(x̂) = h(ẑ) = h,
d(x) = d(x̂) = d, d(y) = e, and d(z) = d(ẑ) = f . We let the choice function Ch of h be induced
by the preference relation4

(C1) {x̂, z} � {x, ẑ} � {y, ẑ} � {x̂, y} � {x, y} � {y, z} � {x̂, ẑ} � {x, z}
� {y} � {ẑ} � {x̂} � {x} � {z} � ∅.

Hatfield et al. (2016) proved that Ch does not have a substitutable completion. Here, we show
that Ch can be modeled as a multi-division choice function with flexible allotments. We let
S = {1, 2, 3, 4}, with the extended choice functions of the divisions s induced by the following
preference relations:5

�1 : {x̂} � ∅,
�2 : {x, y} � {x} � {y} � ∅,
�3 : {ẑ} � ∅,
�4 : {z} � ∅.

It is immediate that for each s ∈ S, the extended choice function Cs is substitutable and
size monotonic, satisfies the irrelevance of rejected contracts condition for any allotment, and,
moreover, is monotonic with respect to the allotment and conditionally acceptant.

For each set of contracts Y ⊆ X, we denote the allotment function by

q(Y ) = (q1(Y ), q2(Y ), q3(Y ), q4(Y ));

in Table C1, we define the allotment function for every possible set of contracts available to h,
and also state the choice of h from that set of contracts.

It is clear from Table C1 that the choice function just defined is equivalent to the choice
function induced by (C1). Moreover, it is straightforward to check using Table C1 that q does
not depend on irrelevant contracts, does not observably grant excess positions, and is monotone
in aggregate across observable offer processes.

We now show that q is single-peaked across observable offer processes. We say that a division s
is capacity constrained under Y at n if Cs(Y s; q

s(Y )) ( Cs(Y s;∞) and |Cs(Y s; q
s(Y ))| = n.

Thus, to show that q is single-peaked across observable offer processes, it suffices to show that if
a division is capacity constrained under c(x) at n for some offer process x, for any offer process y
such that c(x) ⊆ c(y), division s is capacity constrained under c(y) at m ≤ n. Now, we consider
any observable offer processes x and y such that c(x) ( c(y). If |c(x)| ≤ 2, then no division is

4A preference relation �h for hospital h induces a choice function Ch for h under which

Ch(Y ) = max�h{Z ⊆ Xh : Z ⊆ Y },

where by max�h we mean the maximum with respect to the ordering �h; that is, h chooses its most-preferred subset of Y .
5A preference relation �s for s induces an extended choice function Cs for s, under which

Cs(Y ; a) = max�s{Z ⊆ Y : |Z| ≤ a}

where by max�s we mean the maximum with respect to the ordering �s; that is, s chooses its most-preferred subset of Y that
has size less than or equal to a.
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Y q(Y ) Ch(Y )
{x, x̂, y, z, ẑ} (1, 0, 0, 1) {x̂, z}
{x, x̂, y, z} (1, 0, 0, 1) {x̂, z}
{x, x̂, z, ẑ} (1, 0, 0, 1) {x̂, z}
{x̂, y, z, ẑ} (1, 0, 0, 1) {x̂, z}
{x, x̂, z} (1, 0, 0, 1) {x̂, z}
{x̂, z, ẑ} (1, 0, 0, 1) {x̂, z}
{x̂, y, z} (1, 0, 0, 1) {x̂, z}
{x̂, z} (1, 0, 0, 1) {x̂, z}
{x, x̂, y, ẑ} (0, 1, 1, 0) {x, ẑ}
{x, y, z, ẑ} (0, 1, 1, 0) {x, ẑ}
{x, x̂, ẑ} (0, 1, 1, 0) {x, ẑ}
{x, y, ẑ} (0, 1, 1, 0) {x, ẑ}
{x, z, ẑ} (0, 1, 1, 0) {x, ẑ}
{x, ẑ} (0, 1, 1, 0) {x, ẑ}
{x̂, y, ẑ} (0, 1, 1, 0) {y, ẑ}
{y, z, ẑ} (0, 1, 1, 0) {y, ẑ}
{y, ẑ} (0, 1, 1, 0) {y, ẑ}
{x, x̂, y} (1, 1, 0, 0) {x̂, y}
{x̂, y} (1, 1, 0, 0) {x̂, y}
{x, y, z} (0, 2, 0, 0) {x, y}
{x, y} (0, 2, 0, 0) {x, y}
{y, z} (0, 1, 0, 1) {y, z}
{x̂, ẑ} (1, 0, 1, 0) {x̂, ẑ}
{x, z} (0, 1, 0, 1) {x, z}
{y} (0, 1, 0, 0) {y}
{z, ẑ} (0, 0, 1, 0) {ẑ}
{ẑ} (0, 0, 1, 0) {ẑ}
{x, x̂} (1, 0, 0, 0) {x̂}
{x̂} (1, 0, 0, 0) {x̂}
{x} (0, 1, 0, 0) {x}
{z} (0, 0, 0, 1) {z}
∅ (0, 0, 0, 0) ∅

Table C1—The value of the allotment function and choice function of h for every possible set of contracts

available to h.
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capacity constrained when c(x) is available, and so we have nothing to show. If |c(x)| = 3, there
are four cases to consider:

c(x) = {x, y, z}. In this case, division 4—and only division 4—is capacity constrained under c(x)
at 0. Moreover, since y is observable and c(x) ( c(y), we must have that c(y) = {x, y, z, ẑ},
under which division 4 is still capacity constrained at 0.

c(x) = {x̂, y, ẑ}. In this case, division 1—and only division 1—is capacity constrained under c(x)
at 0. Moreover, since y is observable and c(x) ( c(y), we must have that c(y) = {x̂, y, ẑ, x},
under which division 1 is still capacity constrained at 0.

c(x) = {x, y, ẑ}. In this case, q(c(x)) = (0, 1, 1, 0). Moreover, since y is observable and c(x) ( c(y),
we must have that c(y) = {x, y, z, ẑ}; but then we also have q(c(y)) = (0, 1, 1, 0).

c(x) = {x̂, y, z}. In this case, there does not exist an observable offer process y such that c(x) (
c(y).

D. Matching with Distributional Constraints

In this appendix, we explain how our framework nests the matching with regional caps model
of Kamada and Kojima (2015, 2017).

D1. The Kamada and Kojima (2015, 2017) Model of Matching with Distributional Constraints

First, we must note one small, potentially confusing point of terminology: In the Kamada and
Kojima (2015, 2017) framework, hospitals are partitioned into regions, and there are distribu-
tional constraints (regional caps) that restrict the number of doctors that can be assigned to each
region. In our framework, by contrast, hospitals are the top-level institutions, and constraints
within hospitals determine distributions across divisions. Thus, the divisions in our framework
correspond to Kamada and Kojima’s (2015, 2017) hospitals, while our hospitals correspond to
Kamada and Kojima’s (2015, 2017) regions.

In the setting of Kamada and Kojima (2015, 2017), doctors have strict preferences over the
jobs they could have—represented in our context by contracts

(d, h, s) ∈ X =
⋃
h∈H

D × {h} × Sh

or, equivalently, by hospital–division pairs

(h, s) ∈ J ≡
⋃
h∈H

{(h, s) : s ∈ Sh}.6,7

The preferences of doctor d over contracts in Xd naturally correspond to preferences over
hospital–division pairs: If (d, h, s) �d (d, g, t) for some hospitals h, g ∈ H, some division s ∈ Sh,
and some division t ∈ Sg, then we write (h, s) �d (g, t). Similarly, if (d, h, s) �d ∅ for some
hospital h ∈ H and some division s ∈ Sh, then we write (h, s) �d ∅. Finally, if ∅ �d (d, h, s) for
some hospital h ∈ H and some division s ∈ Sh, then we write ∅ �d (h, s).

Each hospital–division pair j ∈ J has responsive preferences with respect to some strict rank-
ing �j of D ∪ {∅} and a fixed capacity q̄j. That is, from any given set of contracts Y , the choice

6In the Kamada and Kojima (2015, 2017) model, doctors’ preferences could be expressed as rankings over just divisions,

as Kamada and Kojima (2015, 2017) took divisions as primitives. In our context, doctors’ preferences must be expressed over

hospital–division pairs (h, s), as divisions in our setup only exist when associated with a hospitals.
7Here, unlike in the main text, we explicitly note the dependence of the set of divisions S on the underlying hospital, as we

need to consider doctors’ preferences over hospital–division pairs.
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function Cj of the hospital–division pair j = (h, s) chooses the contracts in

Yj ≡
{

(d, ĥ, ŝ) ∈ Y : j = (ĥ, ŝ) = (h, s)
}

associated to the q̄j most highly-ranked doctors according to �j; if there are fewer than q̄j

contracts in Yj associated with doctors that j ranks more highly than the outside option ∅, then
choice function Cj of j chooses all such contracts. Additionally, each hospital h has an overall
capacity Q̄h.

A matching is a mapping µ that assigns doctors to hospital–division pairs, i.e., a mapping µ
such that

1) µ(d) ∈ J ∪ {∅} for all d ∈ D,

2) µ(j) ⊆ D for all j ∈ H, and

3) for all d ∈ D and h ∈ H, we have that d ∈ µ(j) if and only if µ(d) = j.

A matching µ is

• individually rational for doctors if, for all d ∈ D, we have µ(d) �d ∅;

• individually rational for hospital divisions if, for all hospital–division pairs j ∈ J , we have
d �j ∅ whenever d ∈ µ(j);

• feasible if |µ(j)| ≤ q̄j for each j ∈ J and
∑

s∈Sh |µ((h, s))| ≤ Q̄h for each h ∈ H; and

• blocked by (d, j) ∈ D×J if j �d µ(d), d �j ∅, and either |µ(j)| < q̄j or d �j e for some e ∈ µ(j).

At the aggregate level, the hospital h has preferences over capacity distributions across divi-
sions. Formally, there is a weak ordering Dh over the set of distribution vectors

Wh ≡ {(ws)s∈Sh : ws ∈ Z≥0}.

Given Dh, a capacity allocation rule is a mapping p :Wh →Wh such that for all w ∈ Wh,

p(w) ∈ maxDh
{w′ : w′ ≤ w}.8,9

Kamada and Kojima (2015, 2017) imposed the following assumptions on the capacity allocation
rule p:

1) If w,w′ ∈ Wh are such that p(w) ≤ w′ ≤ w, then p(w′) = p(w).

2) For all w ∈ Wh and all s ∈ Sh, [p(w)]s ≤ q̄(h,s).

3) For all w ∈ Wh,
∑

s∈Sh [p(w)]s ≤ Q̄h.

4) For all w ∈ Wh, if there is an s ∈ Sh such that [p(w)]s < min{ws, q̄
(h,s)}, then

∑
t∈Sh [p(w)]t =

Q̄h.

5) For all w,w′ ∈ Wh and s ∈ Sh such that w ≤ w′ and [p(w)]s < [p(w′)]s, we have [p(w)]s = ws.

In the sequel, we assume the preceding conditions, and refer to them as Conditions 1–5 of
Kamada and Kojima (2015, 2017).

Kamada and Kojima (2015, 2017) also introduced the following stability concept, stability
under distributional constraints.

8Here, we suppress the dependence of p on the hospital h for notational simplicity.
9Here, by maxDh

, we mean the maximum with respect to the ordering Dh.
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DEFINITION 1: A matching µ is stable under distributional constraints, if it is feasible and in-
dividually rational for doctors and hospitals, and whenever (d, (h, s)) is a blocking pair the following
three conditions hold:

1) The hospital h is capacity constrained, i.e.,
∑

ŝ∈Sh |µ((h, ŝ))| = Q̄h.

2) The hospital–division pair (h, s) prefers all of its doctors under µ to d, i.e., d′ �(h,s) d for all
d′ ∈ µ((h, s)).

3) Either

a) doctor d is not employed at hospital h under µ, i.e., d /∈ ∪s∈Shµ((h, s)), or

b) hospital h prefers its distribution vector under µ to the one that would arise if d were to
switch to j, that is, (|µ((h, ŝ))|)ŝ∈Sh Dh v, where

vŝ =


|µ((h, ŝ))|+ 1 ŝ = s

|µ((h, ŝ))| − 1 (h, ŝ) = µ(d)

|µ((h, ŝ))| otherwise.

Definition 1 rules out blocks (d, (h, s)) in which the hospital h is capacity constrained, the
division s only benefits if it adds d as a new doctor, and either d is employed at a different
hospital pre-block or the hospital h prefers its distribution vector pre-block to its distribution
vector post-block.

D2. Embedding the Kamada–Kojima (2015, 2017) Model within Our Framework

We now show how to embed the model of Kamada and Kojima (2015, 2017) into our model
of matching with flexible allotments. For notational simplicity, we focus on a single hospital
h, and return to suppressing the notation for h wherever doing so will not introduce confusion.
Now, for each doctor d and division s ∈ Sh, there is just one contract, denoted (d, s) = (d, h, s),
under which d is employed at division s (of h). Thus, the set of contracts can be reduced to
X = ∪s∈Sh{(d, s) : d ∈ D}.

We assume that each division s ∈ Sh has a strict ranking �s of contracts in the set

{(d, s) ∈ X : d ∈ D} ∪ {∅}

such that

1) (d, s) �s (d′, s) if and only if d �(h,s) d
′,

2) (d, s) �s ∅ if and only if d �(h,s) ∅, and

3) ∅ �s (d, s′) for all s′ 6= s and d ∈ D.10

For any allotment a, the extended choice function Cs(·; a) of each division s is assumed to be
responsive with respect to the order �s with capacity a.11 Next, we use p to define an allotment
function q by setting, for each Y ⊆ X,

(D1) q(Y ) = p($(Y )),

10Note that different divisions never have acceptable contracts in common.
11We could instead use the capacity min{a, q̄(h,s)}, which bounds the number of accepted doctors at q̄(h,s). This is not

formally necessary in our construction, however, as we impose the division cap q̄(h,s) via the allotment function.
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where we take

(D2) $(Y ) ≡ (|{y ∈ Yh : y �(h,s) ∅|)s∈S

to be the vector that counts the number of contracts in Yh that are acceptable to each division s.
With our specifications of the extended choice functions Cs and the allotment function q, the

choice function Ch implements the choices made by the hospital–division pairs (h, s) under the
choice functions C(h,s) and the constraints imposed by p under the cumulative offer mechanism.

We now prove that the extended choice functions Cs, combined with the allotment function q,
do indeed make the induced hospital choice function Ch a multi-division choice function with
flexible allotments.

CLAIM 7: The hospital choice function Ch induced by (Cs)s∈S and q (under the choice procedure
defined in Section III) is a multi-division choice function with flexible allotments. That is:

• For any fixed allotment, each division’s extended choice function Cs(·; a) is substitutable and
size monotonic, and satisfies the irrelevance of rejected contracts condition. Moreover, each
division’s extended choice function Cs is monotonic with respect to the allotment and condi-
tionally acceptant.

• The allotment function q does not depend on irrelevant contracts, does not observably grant
excess positions, is single-peaked across observable offer processes, and is monotone in aggregate
across observable offer processes.

PROOF:
As Cs(·; a) is responsive, it is immediate that it satisfies the classical substitutability, size

monotonicity, and irrelevance of rejected contracts conditions. Likewise, it is immediate that
each division’s extended choice function Cs is monotonic with respect to the allotment and
conditionally acceptant.

Now, we show the claimed properties of the allotment function q; as we do so, we sometimes
abuse notation slightly by writing

ps(w) ≡ (p(w))s and $s(Y ) ≡ ($(Y ))s.

1) The allotment function q does not depend on irrelevant contracts: We consider a set
of contracts Y ⊆ X and suppose that z ∈ Rh(Y ). We first argue that

q(Y ) = p($(Y )) ≤ $(Y r {z}).(D3)

First, we recall that the contract z is associated to a unique division—that is, z = (d, s) for
some division s. Thus, if z = (d, s) ∈ Rh(Y ), we must have either:

• ∅ �(h,s) d (d is unacceptable to s),

• d �(h,s) ∅ and ps($(Y )) = q̄(h,s) (d is acceptable to s, but s is at maximum-possible
capacity), or

• d �(h,s) ∅ and ps($(Y )) < q̄(h,s) (d is acceptable to s, but the allotment rule constrains s
below its maximum-possible capacity).

In the first case, we must have $t(Y ) = $t(Y r {z}) for all t ∈ S (recall (D2)); hence, (D3) is
immediate, as pt($t(Y )) ≤ $t(Y ) by construction.

In the second and third cases, we have that qs(Y ) ≤ $s(Y ) − 1 given that z ∈ Rh(Y ) and
d �(h,s) ∅; as ps($(Y )) = qs(Y ), this implies that

(D4) ps($(Y )) ≤ $s(Y )− 1.
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Meanwhile, we have

(D5) $s(Y r {z}) = $s(Y )− 1,

as |{y ∈ Yh r {z} : y �(h,s) ∅| = |{y ∈ Yh : y �(h,s) ∅| − 1. Combining (D4) with (D5) shows
that

(D6) ps($(Y )) ≤ $s(Y r {z}).

Meanwhile, as z is associated to s, it is unacceptable to all divisions t 6= s; this implies that
$t(Y r {z}) = $t(Y ) for all such t. As pt($(Y )) ≤ $t(Y ) for all t ∈ S, we then have

(D7) pt($(Y )) ≤ $t(Y r {z}) for all divisions t 6= s.

Combining (D6) with (D7), we find that

pt($(Y )) ≤ $t(Y r {z})

for all divisions t ∈ S—exactly (D3).

Now, having proven (D3), we note that $t(Y r{z}) ≤ $t(Y ) mechanically, so that Condition 1
of Kamada and Kojima (2015, 2017) implies that p($(Y )) = p($(Y r {z})). Thus, we have
q(Y r {z}) = p($(Y r {z})) = p($(Y )) = q(Y ); this implies the claim.

2) The allotment function q does not observably grant excess positions: Let x =
(x1, . . . , xM) be an observable offer process, and assume that there is a division s such that

(D8) qs(c(x)) > min{|{(d, s) ∈ c s(x) : d �(h,s) ∅}|, q̄(h,s)}.

We assume without loss of generality that12

(D9)
for all pairs (m, t) such that either m < M or m = M and t < s,

we have qt(c(xm)) ≤ min{|{(d, t) ∈ c t(x
m) : d �(h,t) ∅}|, q̄(h,t)}.

Now, as |c(x) r c(xM−1)| = 1, we must have pt($(c(x))) ≤ pt($(c(xM−1))) + 1 for all t.
Moreover, by Condition 5 of Kamada and Kojima (2015, 2017), we have pt($(c(x))) =
pt($(c(xM−1))) + 1 only if pt($(c(xM−1))) = $t(c(xM−1)).

Combining the preceding observations with (D9) (and recalling that q(·) = p($(·)) by (D1)),
we see that for all pairs (m, t) such that either m < M or m = M and t < s, we must have
either

qt(c(x)) ≤ qt(c(xM−1))(D10)

or

qt(c(x)) = qt(c(xM−1)) + 1(D11)

qt(c(xM−1)) = |{(d, t) ∈ c t(x
M−1) : d �(h,t) ∅}| < q̄(h,t)

d(xM) �(h,t) ∅
xM ∈ c t(x) r c t(x

M−1).

12If (D9) did not hold for the claimed pairs (m, t), then we could shorten the offer process x to xm or replace s with t.
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Now, we prove via induction that

(D12) Ct(c t(x
M−1); qt(c(xM−1))) ⊆ c t(x) for all t ≤ s.

First, we note that (D12) is immediately satisfied for the base case of t = 1, as

c 1(xM−1) = c(xM−1) ⊆ c(x) = c 1(x).

We suppose that (D12) holds for all t′ < t ≤ s, and fix some y ∈ Ct(c t(x
M−1); qt(c(xM−1))).

Since y ∈ Ct(c t(x
M−1); qt(c(xM−1))), under the choice procedure defining Ch, for any t′ < t,

we must have that the contract y is not among the qt
′
(c(xM−1)) most preferred contracts in

{(d, t′) ∈ c t′(x
M−1) : d �(h,t′) ∅}.

If qt
′
(c(x)) ≤ qt′(c(xM−1)), then (D12) in the t′ case immediately implies that y is not among

the qt
′
(c(x)) most preferred contracts in {(d, t′) ∈ c t′(x) : d �(h,t′) ∅}.

Otherwise, if qt
′
(c(x)) = qt

′
(c(xM−1)) + 1, we must have that

qt
′
(c(xM−1)) = |{(d, t′) ∈ c t′(x

M−1) : d �(h,t′) ∅}| < q̄(h,t′),

recalling (D11). As y is not chosen by t′ when c(xM−1) is available to h, the preceding observa-
tion implies that either ∅ �(h,t′) d(y) or (d(y), t′) /∈ c(xM−1). In the former case, it is immediate

that d(y) /∈ d(Ct′(c t′(x); qt
′
(c(x)))). In the latter case, y ∈ Ct(c t(x

M−1); qt(c(xM−1))) im-
plies d(y) 6= d(xM) and thus (d(y), t′) /∈ c(x).

Hence, no matter whether qt
′
(c(x)) ≤ qt

′
(c(xM−1)) or qt

′
(c(x)) = qt

′
(c(xM−1)) + 1, we

obtain that d(y) /∈ d(Ct′(c t′(x); qt
′
(c(x)))). Since y was arbitrary, this shows that

Ct(c t(x
M−1); qt(c(xM−1))) ⊆ c t(x) if Ct′(c t′(x

M−1); qt
′
(c(xM−1))) ⊆ c t′(x) for all t′ < t;

this completes the proof of (D12).

To complete the proof that q does not observably grant excess positions, we now derive a
contradiction to (D8). Note again from (D9) that

qs(c(xM−1)) ≤ min{|{(d, s) ∈ c s(x
M−1) : d �(h,s) ∅}|, q̄(h,s)};

this inequality implies that |Cs(c s(x
M−1); qs(c(xM−1)))| = qs(c(xM−1)). There are two cases

to consider:

• We consider first the case in which qs(c(x)) ≤ qs(c(xM−1)). Given (D12), we have
Cs(c s(x

M−1); qs(c(xM−1))) ⊆ c s(x), and thus

|Cs(c s(x
M−1); qs(c(xM−1)))| ≤ |{(d, s) ∈ c s(x) : d �(h,s) ∅}|.

Since |Cs(c s(x
M−1); qs(c(xM−1)))| = qs(c(xM−1)) and qs(c(x)) ≤ qs(c(xM−1)), we ob-

tain a contradiction to (D8).

• We consider second the case in which qs(c(x)) > qs(c(xM−1)). Note that, here again,
(D11) must hold. Since we then have qs(c(xM−1)) = |{(d, s) ∈ c s(x

M−1) : d �(h,s) ∅}|
and |{(d, s) ∈ c s(x

M−1) : d �(h,s) ∅}| < q̄(h,s), we see that Cs(c s(x
M−1); qs(c(xM−1))) =

{(d, s) ∈ c s(x
M−1) : d �(h,s) ∅}. Since Cs(c s(x

M−1); qs(c(xM−1))) ⊆ c s(x) and
xM ∈ c s(x) r Cs(c s(x

M−1); qs(c(xM−1))), we have that

|{(d, s) ∈ c s(x) : d �(h,s) ∅}| = |{(d, s) ∈ c s(x
M−1) : d �(h,s) ∅}|+ 1.

Since, again by (D11), we have that |{(d, s) ∈ c s(x
M−1) : d �(h,s) ∅}| = qs(c(xM−1))
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and qs(c(x)) = qs(c(xM−1))+1, we obtain that |{(d, s) ∈ c s(x) : d �(h,s) ∅}| = qs(c(x)),
again contradicting our earlier assumption (D8).

3) The allotment function q is single-peaked across observable offer processes: We
consider observable offer processes x and y such that c(x) ⊆ c(y). Let s be a division such
that |Cs(c s(x);∞)| > qs(c(x)). As $s(c(x)) ≥ |Cs(c s(x);∞)| automatically, we see that
$s(c(x)) > qs(c(x)). As q(c(x)) = p($(c(x))) by construction (recall (D1)) and $(c(y)) ≥
$(c(x)) automatically, Condition 5 of Kamada and Kojima (2015, 2017) then implies that
ps($(c(y))) ≤ ps($(c(x))), so that qs(c(y)) ≤ qs(c(x)), as desired.

4) The allotment function q is monotone in aggregate across observable offer pro-
cesses: We consider observable offer processes x and y such that c(x) ⊆ c(y). If we have

(D13)
∑
s∈S

qs(c(x)) >
∑
s∈S

qs(c(y)),

then it must be the case that
∑

s∈S q
s(c(y)) < Q̄h, and so, by Condition 4 of Kamada and

Kojima (2015, 2017), we have that qs(c(y)) = ps($(c(y))) = min{$s(c(y)), q̄(h,s)} for all s
(as, by the definition of the capacity allocation rule, qs(c(y)) ≤ $s(c(y)), and, by Condition 2
of Kamada and Kojima (2015, 2017), qs(c(y)) ≤ q̄(h,s)). But, since c(x) ⊆ c(y), we have that
min{$s(c(x)), q̄(h,s)} ≤ min{$s(c(y)), q̄(h,s)} for all s. Thus, by Condition 4 of Kamada and
Kojima (2015, 2017),

qs(c(x)) = ps($(c(x))) ≤ min{$s(c(x)), q̄(h,s)} ≤ min{$s(c(y)), q̄(h,s)} = qs(c(y)).

But then, summing over all s, we have that∑
s∈S

qs(c(x)) ≤
∑
s∈S

qs(c(y)),

contradicting (D13).

D3. Strategy-Proofness of Cumulative Offer Mechanisms in the Kamada–Kojima (2015, 2017) Setting

With the embedding described in Appendix D2, strategy-proofness of cumulative offer mech-
anisms in the Kamada and Kojima (2015, 2017) context follows directly from our main results.

PROPOSITION 1: Suppose that each hospital has a choice function constructed as in the model
of Kamada and Kojima (2015, 2017) (as described in Appendix D1). Then any cumulative offer
mechanism is strategy-proof.

PROOF:
This follows immediately upon combining Claim 7 with Corollary 1.

D4. Stability of Cumulative Offer Mechanism Outcomes Under Distributional Constraints

Finally, we show that cumulative offer mechanism outcomes in our context correspond to
matchings that are stable under distributional constraints.

For each feasible set of contracts Y ⊆ X, we define a matching µY by setting

µY (d) =

{
(h, s) (d, h, s) ∈ Y
∅ otherwise,

µY ((h, s)) = {d : (d, h, s) ∈ Y }.
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PROPOSITION 2: Suppose that each hospital has a choice function constructed as in the model
of Kamada and Kojima (2015, 2017) (as described in Appendix D1). Then if A is the outcome of
a cumulative offer mechanism, the matching µA is stable under distributional constraints.

PROOF:
We fix the preferences of the doctors and hospital–division pairs as well as the capacity allo-

cation rules of hospitals, and use the construction described in Appendix D2 to formulate the
associated choice functions and preferences over contracts, as well as the allotment functions. We
let x = (x1, . . . , xM) be the sequence of contracts proposed under any cumulative offer mechanism
given those preferences.13 With this setup, we have

A =
⋃
h∈H

Ch(c(x)).

It is immediate that µA is

• feasible and

• individually rational for both doctors and hospital divisions.

Now, suppose that µA is blocked by (d, (h, s)), i.e., (h, s) �d µ
A(d) and d �(h,s) ∅.

We argue first that d̂ �(h,s) d for all d̂ ∈ µA(s) (i.e., Condition 2 of Definition 1). Since
(h, s) �d µ

A(d), we must have that x = (d, h, s) was proposed at some step of the cumulative

offer process corresponding to x. Since (d, h, s) /∈ A, there has to exist an M̂ such that, letting

x̂ ≡ (x1, . . . , xM̂), we have that (d, h, s) ∈ Rs(c s(x̂); qs(c(x̂))). By (B1) of Claim 1, we must
have that (d, h, s) ∈ Rs(f s(x̂); qs(c(x̂))). By (B2) of Claim 1, we must then have that

(D14) (d, h, s) ∈ Rs(f s(x); qs(c(x))).

Now, if d̂ ∈ µA((h, s)), then (d̂, h, s) ∈ Cs(c s(x); qs(c(x))). Moreover, by (B1) of Claim 1, we
must have that Cs(c s(x); qs(c(x))) = Cs(f s(x); qs(c(x))), and so

(D15) (d̂, h, s) ∈ Cs(f s(x); qs(c(x))).

Together, (D14) and (D15) imply that d̂ �(h,s) d for all d̂ ∈ µA(s), as desired.
We argue second that h is capacity constrained (Condition 1 of Definition 1). We have just

shown that d̂ �(h,s) d for all d̂ ∈ µA(s). Nevertheless, (d, (h, s)) blocks µ; hence, it must be the
case that |µA((h, s))| < q̄(h,s).14 Moreover, as µ(d) 6= (h, s) under µ even though (d, h, s) is both

• in c(x) and

• acceptable to (h, s),

we must have |µA((h, s))| < $s(c(x)). Thus, we have

ps($(c(x))) = qs(c(x)) = |µA((h, s))| < min{$s(c(x)), q̄(h,s)};

hence, Condition 4 of Kamada and Kojima (2015, 2017) implies that hospital h is capacity
constrained, as desired.

13By Proposition 1 of Hatfield et al. (2016), all cumulative offer mechanisms in this context are outcome-equivalent.
14If we had |µA((h, s))| = q̄(h,s) then (d, (h, s)) could not block µ, as under µ the hospital–division pair (h, s) would be

assigned q̄(h,s) doctors it prefers to d.
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Finally, we show Condition 3 of Definition 1. Suppose that d is employed at h under µ (Case 3b
of Condition 3), i.e., there exists a division ŝ ∈ Sh such that µ(d) = (h, ŝ). By construction, we
have

p($(c(x))) = q(c(x)) = (|µA((h, t))|)t∈Sh .

Let v be obtained by setting vs = ps($(c(x))) + 1, vŝ = pŝ($(c(x))) − 1, and vt = pt($(c(x)))
for all t ∈ Sh r {s, ŝ}. As (d, h, s) ∈ c(x) and (d, h, s) /∈ µA((h, s)), we must have vs < $s(c(x)),
so that v ≤ $(c(x)). But then, v ∈ {w′ : w′ ≤ $(c(x))}. Thus, we must have

(|µA((h, t))|)t∈Sh = p($(c(x))) Dh v,

as when allocating capacity under p, the hospital h could have chosen the distribution vector v but
instead chose the distribution vector corresponding to µA. Thus, we find that (|µA((h, t))|)t∈ShDh

v, as required by Definition 1.

*
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