Dynamic Position Auctions with Consumer Search

Scott Duke Kominers

Harvard University

Harvard EconCS Research Workshop November 4, 2008

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

November 4, 2008 1 / 31

Overview

Road Map

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Position Auctions

- < f →

э

• Position Auctions (without consumer search)

э

Position Auctions (without consumer search) Motivation

э

- Motivation
- Static Model

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence
- Generalizations?

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence
- Generalizations?

• Sponsored search is a multibillion-dollar industry

- Sponsored search is a multibillion-dollar industry
- The mechanisms used are relatively new

- Sponsored search is a multibillion-dollar industry
- The mechanisms used are relatively new
- Welfare implications not well-understood

Edelman, Ostrovsky, and Schwarz (2007) Static Model

Edelman, Ostrovsky, and Schwarz (2007) Static Model*N* advertisers

Edelman, Ostrovsky, and Schwarz (2007) Static Model*N* advertisers

• value per-click: q_{π} $(\pi = 1, 2, \dots, N)$

Edelman, Ostrovsky, and Schwarz (2007) Static Model*N* advertisers

- value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
- Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$

Edelman, Ostrovsky, and Schwarz (2007) Static Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$
- M < N positions

Edelman, Ostrovsky, and Schwarz (2007) Static Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$
- M < N positions
 - click-through rate: θ_j (j = 1, 2, ..., M)

Edelman, Ostrovsky, and Schwarz (2007) Static Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$
- M < N positions

• exogenous click-through rate: θ_j (j = 1, 2, ..., M)

Edelman, Ostrovsky, and Schwarz (2007) Static Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$
- M < N positions

• exogenous click-through rate: θ_j (j = 1, 2, ..., M)

Edelman, Ostrovsky, and Schwarz (2007) Static Model

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Henceforth, assume $q_1 \geq q_2 \geq \cdots \geq q_N$
- M < N positions
 - exogenous click-through rate: θ_j (j = 1, 2, ..., M)
 - By convention: $\theta_j = 0$

 $(i = M + 1, \ldots, N)$

Generalized Second-Price (GSP) Auction

• Advertisers submit bids: b_{π}

- Advertisers submit bids: b_{π}
- Positions are awarded in decreasing bid order

- Advertisers submit bids: b_{π}
- Positions are awarded in decreasing bid order
 - Advertiser awarded position $j: \pi_j$ $(1 \le j \le N)$

- Advertisers submit bids: b_{π}
- Positions are awarded in decreasing bid order
 - Advertiser awarded position $j: \pi_j$ $(1 \le j \le N)$
- Advertiser π_j pays $b_{\pi_{j+1}}$ per-click
Generalized Second-Price (GSP) Auction

- Advertisers submit bids: b_{π}
- Positions are awarded in decreasing bid order
 - Advertiser awarded position $j: \pi_j$ $(1 \le j \le N)$
- Advertiser π_j pays $b_{\pi_{j+1}}$ per-click

Payoff to
$$\pi_j: heta_j(m{q}_{\pi_j}-m{b}_{\pi_{j+1}})$$

Equilibria

Scott Duke Kominers (Harvard)

Locally Envy-free Equilibria

Locally Envy-free Equilibria

Locally Envy-free Equilibria

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position.

Locally Envy-free Equilibria

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

Locally Envy-free Equilibria

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

• Envy-free equilibria are *stable*

Locally Envy-free Equilibria

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

Envy-free Equilibrum

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

Envy-free Equilibrum

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position

and advertiser payments are minimized .

•
$$heta_j(q_{\pi_j} - b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j} - b_{\pi_j})$$

Envy-free Equilibrum

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position and advertiser payments are minimized.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

Envy-free Equilibrum

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position and advertiser payments are minimized.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

• GSP ordering equals VCG ordering

Envy-free Equilibrum

 No advertiser π_j can improve her payoff by exchanging bids with π_{j-1}, the advertiser in the immediately higher position and advertiser payments are minimized.

•
$$heta_j(q_{\pi_j}-b_{\pi_{j+1}}) \geq heta_{j-1}(q_{\pi_j}-b_{\pi_j})$$

- GSP ordering equals VCG ordering
- GSP payments equal VCG payments

7 / 31

Scott Duke Kominers (Harvard)

• At the Envy-free Equilibrium

• At the Envy-free Equilibrium, advertisers are sorted in order of valuation:

• At the Envy-free Equilibrium, advertisers are sorted in order of valuation:

$$q_{\pi_1} \geq q_{\pi_2} \geq \cdots \geq q_{\pi_M}$$

• At the Envy-free Equilibrium, advertisers are sorted in order of valuation:

$$q_{\pi_1} \geq q_{\pi_2} \geq \cdots \geq q_{\pi_M}$$

•
$$(\pi_j = j \text{ for all } 1 \leq j \leq M)$$

• At the Envy-free Equilibrium, bids follow a recursive formula:

• At the Envy-free Equilibrium, bids follow a recursive formula:

$$b_{\pi_j} = egin{cases} > b_2 & j = 1, \ q_{\pi_j} - rac{ heta_j}{ heta_{j-1}} (q_{\pi_j} - b_{\pi_{j+1}}) & 1 < j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

- < f →

э

• Position auctions are dynamic

• Position auctions are dynamic

• Advertisers may update bids at any time

• Position auctions are dynamic

- Advertisers may update bids at any time
- New advertisers may enter at any time

• Position auctions are dynamic

- Advertisers may update bids at any time
- New advertisers may enter at any time
- Do equilibrium results break down once dynamics are introduced?

э

Cary et al. (2008) Dynamic Model

• Extends Edelman, Ostrovsky, and Schwarz (2007)

- Extends Edelman, Ostrovsky, and Schwarz (2007)
- Dynamic setting

- Extends Edelman, Ostrovsky, and Schwarz (2007)
- Dynamic setting
 - Sequential rounds

- Extends Edelman, Ostrovsky, and Schwarz (2007)
- Dynamic setting
 - Sequential rounds
 - Synchronous updating

- Extends Edelman, Ostrovsky, and Schwarz (2007)
- Dynamic setting
 - Sequential rounds
 - Synchronous updating
 - Advertisers play a "best-response" strategy

Balanced Bidding

Balanced Bidding

. . .

• Given the bids of the other advertisers, advertiser π

Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$
Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

• (to deal with all positions uniformly, set $\theta_0 = 2\theta_1$)

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

(to deal with all positions uniformly, set θ₀ = 2θ₁)
Unique fixed point: Bids follow a recursive formula,

$$b_{\pi_j} = egin{cases} 2b_{\pi_2} & j = 1, \ q_{\pi_j} - rac{ heta_j}{ heta_{j-1}}(q_{\pi_j} - b_{\pi_{j+1}}) & 1 < j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position j
 among the positions below the current position
 which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

(to deal with all positions uniformly, set θ₀ = 2θ₁)
Unique fixed point

11 / 31

Restricted Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$heta_j(q_\pi-b_{\pi_{j+1}})= heta_{j-1}(q_\pi-b_\pi)$$

• (to deal with all positions uniformly, set $\theta_0 = 2\theta_1$)

Unique fixed point

Convergence

3

Convergence

• If all advertisers play the Restricted Balanced Bidding strategy

Convergence

• If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point

Convergence

• If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

Convergence

- If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.
- The dynamic model is "well-approximated" by the static model.

Road Map

• Position Auctions (without consumer search)

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence
- Generalizations?

э

• Consumers are a crucial party in the sponsored search market

- Consumers are a crucial party in the sponsored search market
 - Consumer behavior determines click-through rate

- Consumers are a crucial party in the sponsored search market
 - Consumer behavior determines click-through rate
 - Consumer- and advertiser-welfare may be aligned

- Consumers are a crucial party in the sponsored search market
 - Consumer behavior determines click-through rate
 - Consumer- and advertiser-welfare may be aligned
- Implementation of endogenous click-through rate

э

Athey and Ellison (2008) Model • *N* advertisers

Athey and Ellison (2008) Model

• N advertisers

• value per-click: q_{π} $(\pi = 1, 2, \dots, N)$

- N advertisers
 - value per-click: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"

Athey and Ellison (2008) Model

• N advertisers

• quality:
$$q_{\pi}$$
 $(\pi = 1, 2, \dots, N)$

• Interpretation: "probability of meeting a consumer's need"

• Distribution:
$$F(\cdot)$$

Athey and Ellison (2008) Model

• N advertisers

• quality:
$$q_{\pi}$$
 $(\pi=1,2,\ldots,N)$

- Interpretation: "probability of meeting a consumer's need"
- Distribution: $F(\cdot)$ (public)

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"
 - Distribution: $F(\cdot)$ (public)
 - Sorted: $q_1 \ge q_2 \ge \cdots \ge q_N$.

- N advertisers
 - quality: q_{π} $(\pi = 1, 2, \dots, N)$
 - Interpretation: "probability of meeting a consumer's need"
 - Distribution: $F(\cdot)$ (public)
 - Sorted: $q_1 \ge q_2 \ge \cdots \ge q_N$.

Athey and Ellison (2008) Model*M* < *N* positions

- M < N positions
 - Awarded in a GSP Auction

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met
Athey and Ellison (2008) Model

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$

Athey and Ellison (2008) Model

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$
 - Distribution: $G(\cdot)$

Athey and Ellison (2008) Model

- M < N positions
 - Awarded in a GSP Auction
 - click-through rate: determined endogenously
- continuum of consumers
 - search cost *s_i* per-click
 - search until need is met or until expected benefit $< s_i$
 - Distribution: $G(\cdot)$ (public)

э

• Firms sorted by quality in equilibrium

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy
 - Expected value of q_{π_i}

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy
 - Expected value of q_{π_j} , given that the first j-1 advertisers failed to meet the need:

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy
 - Expected value of q_{π_i} , given that the first j-1advertisers failed to meet the need: \bar{q}_i

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy
 - Expected value of q_{π_j} , given that the first j-1 advertisers failed to meet the need: \bar{q}_j
- \Rightarrow Number of clicks received by π_j

- Firms sorted by quality in equilibrium
- \Rightarrow Consumers follow a top-down search strategy
 - Expected value of q_{π_j} , given that the first j-1 advertisers failed to meet the need: \bar{q}_j
- \Rightarrow Number of clicks received by π_j :

$$(1-q_{\pi_1})\cdots(1-q_{\pi_{j-1}})G(ar q_j)$$

16 / 31

• At the Envy-free Equilibrium

• At the Envy-free Equilibrium, advertisers are sorted in order of quality:

• At the Envy-free Equilibrium, advertisers are sorted in order of quality:

$$q_{\pi_1} \geq q_{\pi_2} \geq \cdots \geq q_{\pi_M}$$

• At the Envy-free Equilibrium, advertisers are sorted in order of quality:

$$q_{\pi_1} \geq q_{\pi_2} \geq \cdots \geq q_{\pi_M}$$

•
$$(\pi_j = j \text{ for all } 1 \leq j \leq M)$$

• At the Envy-free Equilibrium, bids follow a recursive formula:

• At the Envy-free Equilibrium, bids follow a recursive formula:

$$b_{\pi_j} = egin{cases} q_{\pi_j} - rac{G(ar q_j)}{G(ar q_{j-1})}(1-q_{\pi_j})(q_{\pi_j}-b_{\pi_{j+1}}) & 1 < j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

• At the Envy-free Equilibrium, bids follow a recursive formula:

$$b_{\pi_j} = egin{cases} q_{\pi_j} - rac{G(ar q_j)}{G(ar q_{j-1})}(1-q_{\pi_j})(q_{\pi_j}-b_{\pi_{j+1}}) & 1 < j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

• Compare to Edelman, Ostrovsky, and Schwarz (2007) Envy-Free Equilibrium:

• At the Envy-free Equilibrium, bids follow a recursive formula:

$$b_{\pi_j} = egin{cases} q_{\pi_j} - rac{G(ar q_j)}{G(ar q_{j-1})}(1-q_{\pi_j})(q_{\pi_j}-b_{\pi_{j+1}}) & 1 < j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

 Compare to Edelman, Ostrovsky, and Schwarz (2007) Envy-Free Equilibrium:

$$b_{\pi_j} = egin{cases} q_{\pi_j} - rac{ heta_j}{ heta_{j-1}}(q_{\pi_j} - b_{\pi_{j+1}}) & 1 \leq j \leq M, \ q_{\pi_j} & M < j \leq N. \end{cases}$$

16 / 31

Road Map

• Position Auctions (without consumer search)

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence
- Generalizations?

э

Our Dynamic Model

• Extends Athey and Ellison (2008)

- Extends Athey and Ellison (2008)
- Dynamic setting

- Extends Athey and Ellison (2008)
- Dynamic setting
 - Sequential rounds

Framework & Conventions

- Extends Athey and Ellison (2008)
- Ovnamic setting
 - Sequential rounds
 - Synchronous updating

Framework & Conventions

- Extends Athey and Ellison (2008)
- Oynamic setting
 - Sequential rounds
 - Synchronous updating
 - Advertisers play a "best-response" strategy

Framework & Conventions

- Extends Athey and Ellison (2008)
- Oynamic setting
 - Sequential rounds
 - Synchronous updating
 - Advertisers play a "best-response" strategy
 - Consumers ignorant of dynamics

Framework & Conventions

Balanced Bidding

. . .

• Given the bids of the other advertisers, advertiser π

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar q_j)\cdot (1-q_\pi)\cdot (q_\pi-b_{\pi_{j+1}})=G(ar q_{j-1})\cdot (q_\pi-b_\pi)$$

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar q_j)\cdot (1-q_\pi)\cdot (q_\pi-b_{\pi_{j+1}})=G(ar q_{j-1})\cdot (q_\pi-b_\pi)$$

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Unique fixed point

Framework & Conventions

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

- Unique fixed point
 - Athey and Ellison (2008) Envy-Free Equilibrium

Balanced Bidding

- $\bullet\,$ Given the bids of the other advertisers, advertiser $\pi\,$
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Unique fixed point
Framework & Conventions

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Unique fixed point

Framework & Conventions

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar q_j)\cdot(1-q_\pi)\cdot(q_\pi-b_{\pi_{j+1}})=G(ar q_{j-1})\cdot(q_\pi-b_\pi)$$

Unique fixed point

Framework & Conventions

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position j
 among the positions below the current position
 which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

• Unique fixed point

Our Model

Framework & Conventions

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

• Unique fixed point

Our Model

Framework & Conventions

Restricted Balanced Bidding

- Given the bids of the other advertisers, advertiser π
 - targets the position *j* among the positions below the current position which maximizes utility
 - chooses a bid b_{π} to satisfy the envy-free condition:

$$G(ar{q}_j) \cdot (1-q_\pi) \cdot (q_\pi - b_{\pi_{j+1}}) = G(ar{q}_{j-1}) \cdot (q_\pi - b_\pi)$$

Main Result

- < A

Main Result Theorem (Convergence Theorem)

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

Main Result

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

• The dynamic model is "well-approximated" by the static model.

Parameters

Scott Duke Kominers (Harvard)

- < A

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

- < A

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

• $\gamma^*(q) = (1-q) \max_{j>0} \left(\frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})} \right)$

Scott Duke Kominers (Harvard)

< □ > < 同 >

Parameters

•
$$\gamma_j(q) = (1-q) \frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})}$$

• $\gamma^*(q) = (1-q) \max_{j>0} \left(\frac{G(\bar{q}_j)}{G(\bar{q}_{j-1})} \right)$
• $\gamma^{**} = \max_{1 \le \pi \le N} \gamma^*(q_\pi)$

Scott Duke Kominers (Harvard)

< □ > < 同 >

Lemma

At every round $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1})$:

Lemma

At every round $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1}):$

$$\left\{egin{array}{ll} b_\pi > q_{M+1} & \pi < M+1, \ b_\pi = q_\pi & \pi \geq M+1. \end{array}
ight.$$

Scott Duke Kominers (Harvard)

21 / 31

Lemma

At every round $t > t_1 = 2 + \log_{\gamma^{**}}((1 - \gamma^{**})(q_M - q_{M+1})/q_{M+1})$:

$$egin{cases} b_\pi > q_{M+1} & \pi < M+1, \ b_\pi = q_\pi & \pi \geq M+1. \end{cases}$$

Proof Approach. "Dynamical system in γ^{**} ."

21 / 31

Convergence of the *M* Positions • By the Lemma

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions converge to the fixed point after round *t*₁.

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions converge to the fixed point after round t_1 .

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions stabilize after round t_1 .

Convergence of the M Positions

• By the Lemma, we need only show that the *M* positions stabilize after round t_1 .

- By the Lemma, we need only show that the M positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - If $\pi(P) = \{1, \dots, M\}$, then we are done.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - Look at the advertiser $\pi \notin \pi(P)$ with the lowest bid.

- By the Lemma, we need only show that the *M* positions stabilize after round t_1 .
 - Set of stable positions: $P = \{p + 1, \dots, M\}$
 - Set of advertisers in positions of P: $\pi(P)$
 - Next round, all advertisers in $\pi(P)$ repeat their bids.
 - Look at the advertiser $\pi \notin \pi(P)$ with the lowest bid.

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 1: π targets position p

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \not\in \pi(P)$ with the lowest bid
 - Case 1: π targets position p
 - $\Rightarrow P' = P \cup \{p\}$ is stable

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$
 - $\Rightarrow P' = {\hat{p}, \dots, M}$ is stable
Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \not\in \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$

•
$$\Rightarrow P' = \{\hat{p}, \dots, M\}$$
 is stable

• Depends upon the specific functional form of $\gamma_{\hat{p}}(q)$

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 2: π targets position $\hat{p} > p$

•
$$\Rightarrow P' = \{\hat{p}, \dots, M\}$$
 is stable

- Depends upon the specific functional form of $\gamma_{\hat{p}}(q)$
- (Significant divergence from Cary et al. (2008))

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases

Lemma

Scott Duke Kominers (Harvard)

Image: Image:

æ

Lemma

Let $\epsilon = \frac{G(\bar{q}_M)}{2G(\bar{q}_1)} (1 - \gamma^{**}) \min_{\phi \neq \phi'} |q_\phi - q_{\phi'}| \left(\prod_{j=1}^M (1 - q_j) \right).$

Lemma

Let

$$\epsilon = \frac{G(\bar{q}_M)}{2G(\bar{q}_1)}(1 - \gamma^{**}) \min_{\phi \neq \phi'} |q_\phi - q_{\phi'}| \left(\prod_{j=1}^M (1 - q_j)\right).$$

If $b_{\pi_p} > q_\pi - \epsilon$, then advertiser π prefers position p to
any position $\hat{p} < p$.

Image: Image:

æ

Lemma

Let

$$\epsilon = \frac{G(\bar{q}_M)}{2G(\bar{q}_1)}(1 - \gamma^{**}) \min_{\phi \neq \phi'} |q_\phi - q_{\phi'}| \left(\prod_{j=1}^M (1 - q_j)\right).$$

If $b_{\pi_p} > q_\pi - \epsilon$, then advertiser π prefers position p to
any position $\hat{p} < p$.

Proof Approach.

Very weak bound on the utility of position $\hat{p} < p$.

Lemma

Scott Duke Kominers (Harvard)

Image: Image:

æ

Lemma

At most $\log_{1/\gamma^{**}}((q_1 - q_{M+1})/\epsilon)$ consecutive instances of Case 3 may occur.

Lemma

At most $\log_{1/\gamma^{**}}((q_1 - q_{M+1})/\epsilon)$ consecutive instances of Case 3 may occur.

Proof Approach.

"Dynamical system in γ^{**} ."

Lemma

At most $\log_{1/\gamma^{**}}((q_1 - q_{M+1})/\epsilon)$ consecutive instances of Case 3 may occur.

Proof Approach.

"Dynamical system in γ^{**} ." (Not dependent upon the form of $\gamma^{*}(q)$?)

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases after finitely many rounds, Case 1 or 2 must occur

Convergence of the M Positions

- Set of stable positions: $P = \{p + 1, \dots, M\}$
- Advertiser $\pi \notin \pi(P)$ with the lowest bid
 - Case 3: π targets position $\hat{p} < p$
 - \Rightarrow *P* remains stable

minimum bid of advertisers not in $\pi(P)$ increases after finitely many rounds, Case 1 or 2 must occur

 $\bullet \ \Rightarrow \mathbb{QED}$

We have proven:

э

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then the M positions stabilize in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then the M positions stabilize in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

with Consumer Sea

Results

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point in finitely many rounds.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

We have proven:

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

We have proven:

Theorem (Convergence Theorem)

If all advertisers play the Restricted Balanced Bidding strategy, then their bids converge to the fixed point; this convergence is efficient.

-

Image: A mathematical states of the state

æ

• Convergence in an asynchronous bidding model

• Efficient convergence in an asynchronous bidding model

• Efficient convergence in an asynchronous bidding model

 Efficient convergence in an asynchronous bidding model with probability 1

• Efficient convergence in an asynchronous bidding model with probability 1

• Expected convergence time:

- Efficient convergence in an asynchronous bidding model with probability 1
- Expected convergence time:
 - explicit bound

- Efficient convergence in an asynchronous bidding model with probability 1
- Expected convergence time:
 - explicit bound
 - polynomial in N

- Efficient convergence in an asynchronous bidding model with probability 1
- Expected convergence time:
 - explicit bound
 - polynomial in N
 - of the same form as that of Cary et al. (2008)

Road Map

• Position Auctions (without consumer search)

- Motivation
- Static Model (Edelman, Ostrovsky, and Schwarz (2007))
- Dynamic Model (Cary et al. (2008))
- Position Auctions with Consumer Search
 - Motivation
 - Static Model (Athey and Ellison (2008))
- Our Model
 - Convergence
- Generalizations?
э

$\bullet\,$ Our method $\approx\,$ Cary et al. (2008)'s method

 Our method ≈ Cary et al. (2008)'s method; its applicability is naïvely surprising.

 $\bullet\,$ Our method $\approx\,$ Cary et al. (2008)'s method Three key steps:

• Our method pprox Cary et al. (2008)'s method

Three key steps:

restriction of the strategy space

• Our method pprox Cary et al. (2008)'s method

Three key steps:

- restriction of the strategy space
- 2 analysis of low-quality advertisers' behaviors

• Our method pprox Cary et al. (2008)'s method

Three key steps:

- restriction of the strategy space
- 2 analysis of low-quality advertisers' behaviors
- **o** proof that the *M* positions stabilize

restriction of the strategy space

restriction of the strategy space

"Restricted Balanced Bidding"

restriction of the strategy space

- "Restricted Balanced Bidding"
- ensures that the equilibrium in each round is unique

analysis of low-quality advertisers's behavior

analysis of low-quality advertisers's behavior

our first lemma

analysis of low-quality advertisers's behavior

- our first lemma
- low-quality advertisers should drop out efficiently

analysis of low-quality advertisers's behavior

- our first lemma
- low-quality advertisers should drop out efficiently
- equilibrium bid monotonicity presumably unnecessary

o proof that the *M* positions stabilize

o proof that the *M* positions stabilize

• Cases 1–3

o proof that the *M* positions stabilize

- Cases 1–3
- we showed: top *M* advertisers do not bid over their equilibrium bids "too often"

proof that the M positions stabilize

- Cases 1–3
- we showed: top *M* advertisers do not bid over their equilibrium bids "too often"
- may not hold in general

proof that the M positions stabilize

- Cases 1–3
- we showed: top *M* advertisers do not bid over their equilibrium bids "too often"
- may not hold in general

o proof that the *M* positions stabilize

- Cases 1–3
- we showed: top *M* advertisers do not bid over their equilibrium bids "too often"
- may not hold in general—but is likely to hold when equilibrium is monotone

Conclusion

Image: A mathematical states of the state

æ

Conclusion

Convergence should be demonstrable in dynamic position auction models with sufficiently well-behaved static equilibrium strategies.

Questions?

Scott Duke Kominers (Harvard)

Dynamic Position Auctions

November 4, 2008 31 / 31

< 17 ▶

э