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Position Auctions (without consumer search) Static Model (Edelman, Ostrovsky, and Schwarz (2007))

Why study position auctions?

Sponsored search is a multibillion-dollar industry

The mechanisms used are relatively new

Welfare implications not well-understood
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Position Auctions (without consumer search) Static Model (Edelman, Ostrovsky, and Schwarz (2007))

Framework & Conventions

N advertisers

value per-click: qπ (π = 1, 2, . . . ,N)
Henceforth, assume q1 ≥ q2 ≥ · · · ≥ qN

M < N positions

click-through rate: θj (j = 1, 2, . . . ,M)
By convention: θj = 0 (j = M + 1, . . . ,N)
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Position Auctions (without consumer search) Static Model (Edelman, Ostrovsky, and Schwarz (2007))

Framework & Conventions

Generalized Second-Price (GSP) Auction

Advertisers submit bids: bπ
Positions are awarded in decreasing bid order

Advertiser awarded position j : πj (1 ≤ j ≤ N)

Advertiser πj pays bπj+1
per-click

Payoff to πj : θj(qπj
− bπj+1

)
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Position Auctions (without consumer search) Static Model (Edelman, Ostrovsky, and Schwarz (2007))

Framework & Conventions

Equilibria

No advertiser πj can improve her payoff by
exchanging bids with πj−1, the advertiser in the
immediately higher position.

θj(qπj
− bπj+1

) ≥ θj−1(qπj
− bπj

)

GSP ordering equals VCG ordering

GSP payments equal VCG payments
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Position Auctions (without consumer search) Static Model (Edelman, Ostrovsky, and Schwarz (2007))

Equilibrium Results

At the Envy-free Equilibrium
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Equilibrium Results

At the Envy-free Equilibrium, bids follow a recursive
formula:

bπj
=


> b2 j = 1,

qπj
− θj

θj−1
(qπj
− bπj+1

) 1 < j ≤ M ,

qπj
M < j ≤ N .
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Position Auctions (without consumer search) Dynamic Model (Cary et al. (2008))

Why add dynamics?

Position auctions are dynamic

Advertisers may update bids at any time
New advertisers may enter at any time

Do equilibrium results break down once dynamics
are introduced?
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Position Auctions (without consumer search) Dynamic Model (Cary et al. (2008))

Framework & Conventions

Extends Edelman, Ostrovsky, and Schwarz (2007)
Dynamic setting

Sequential rounds
Synchronous updating
Advertisers play a “best-response” strategy
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Position Auctions (without consumer search) Dynamic Model (Cary et al. (2008))

Framework & Conventions

Balanced Bidding

Given the bids of the other advertisers, advertiser π

targets the position j which maximizes utility
chooses a bid bπ to satisfy the envy-free condition:

θj(qπ − bπj+1
) = θj−1(qπ − bπ)

(to deal with all positions uniformly, set θ0 = 2θ1)
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Position Auctions (without consumer search) Dynamic Model (Cary et al. (2008))

Results

Convergence

If all advertisers play the Restricted Balanced
Bidding strategy

The dynamic model is “well-approximated” by the
static model.
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Position Auctions with Consumer Search

Road Map

Position Auctions (without consumer search)
Motivation
Static Model (Edelman, Ostrovsky, and Schwarz (2007))
Dynamic Model (Cary et al. (2008))

Position Auctions with Consumer Search
Motivation
Static Model (Athey and Ellison (2008))

Our Model
Convergence

Generalizations?
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Position Auctions with Consumer Search Static Model (Athey and Ellison (2008))

Why add consumer search?

Consumers are a crucial party in the sponsored
search market

Consumer behavior determines click-through rate
Consumer- and advertiser-welfare may be aligned

Implementation of endogenous click-through rate
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Position Auctions with Consumer Search Static Model (Athey and Ellison (2008))

Framework & Conventions

M < N positions

Awarded in a GSP Auction
click-through rate: determined endogenously

continuum of consumers

search cost si per-click

search until need is met
Distribution: G (·)
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Position Auctions with Consumer Search Static Model (Athey and Ellison (2008))

Equilibrium Results

Firms sorted by quality in equilibrium
⇒ Consumers follow a top-down search strategy

Expected value of qπj

⇒ Number of clicks received by πj

At the Envy-free Equilibrium

Compare to Edelman, Ostrovsky, and Schwarz
(2007) Envy-Free Equilibrium:
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Dynamic Position Auctions with Consumer Search Our Model

Road Map

Position Auctions (without consumer search)
Motivation
Static Model (Edelman, Ostrovsky, and Schwarz (2007))
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Dynamic Position Auctions with Consumer Search Our Model

Framework & Conventions

Extends Athey and Ellison (2008)
Dynamic setting

Sequential rounds
Synchronous updating
Advertisers play a “best-response” strategy
Consumers ignorant of dynamics
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t > t1 = 2 + logγ∗∗((1− γ∗∗)(qM − qM+1)/qM+1):{

bπ > qM+1 π < M + 1,

bπ = qπ π ≥ M + 1.

Proof Approach.
“Dynamical system in γ∗∗.”
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Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions converge to the fixed point after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions converge to the fixed point after round
t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}

Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)

Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

Look at the advertiser π 6∈ π(P) with the lowest bid.

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 22 / 31



Dynamic Position Auctions with Consumer Search Convergence

Results

Convergence of the M Positions
By the Lemma, we need only show that the M
positions stabilize after round t1.

Set of stable positions: P = {p + 1, . . . ,M}
Set of advertisers in positions of P : π(P)
Next round, all advertisers in π(P) repeat their bids.

If π(P) = {1, . . . ,M}, then we are done.

Look at the advertiser π 6∈ π(P) with the lowest bid.
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Convergence of the M Positions

Set of stable positions: P = {p + 1, . . . ,M}
Advertiser π 6∈ π(P) with the lowest bid

Case 3: π targets position p̂ < p
⇒ P remains stable

minimum bid of advertisers not in π(P) increases
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If bπp
> qπ − ε, then advertiser π prefers position p to
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Let
ε = G (q̄M)

2G (q̄1)(1− γ∗∗) minφ 6=φ′ |qφ − qφ′|
(∏M

j=1(1− qj)
)

.

If bπp
> qπ − ε, then advertiser π prefers position p to

any position p̂ < p.

Proof Approach.
Very weak bound on the utility of position p̂ < p.
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Case 3 may occur.
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Results

Lemma
At most log1/γ∗∗((q1 − qM+1)/ε) consecutive instances of
Case 3 may occur.

Proof Approach.
“Dynamical system in γ∗∗.”

(Not dependent upon the form of γ∗(q)?)
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Discussion Possible Generalizations

Road Map

Position Auctions (without consumer search)
Motivation
Static Model (Edelman, Ostrovsky, and Schwarz (2007))
Dynamic Model (Cary et al. (2008))

Position Auctions with Consumer Search
Motivation
Static Model (Athey and Ellison (2008))

Our Model
Convergence

Generalizations?

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 28 / 31



Discussion Possible Generalizations

Unwinding Our Method

1 restriction of the strategy space
2 analysis of low-quality advertisers’ behaviors
3 proof that the M positions stabilize

3 proof that the M positions stabilize

Cases 1–3

we showed: top M advertisers do not bid over their
equilibrium bids “too often”
may not hold in general

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 29 / 31



Discussion Possible Generalizations

Unwinding Our Method

Our method ≈ Cary et al. (2008)’s method

1 restriction of the strategy space
2 analysis of low-quality advertisers’ behaviors
3 proof that the M positions stabilize

3 proof that the M positions stabilize

Cases 1–3

we showed: top M advertisers do not bid over their
equilibrium bids “too often”
may not hold in general

Scott Duke Kominers (Harvard) Dynamic Position Auctions November 4, 2008 29 / 31



Discussion Possible Generalizations

Unwinding Our Method

Our method ≈ Cary et al. (2008)’s method;
its applicability is näıvely surprising.
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Discussion Possible Generalizations

Unwinding Our Method

3 proof that the M positions stabilize
Cases 1–3

we showed: top M advertisers do not bid over their
equilibrium bids “too often”
may not hold in general—but is likely to hold when
equilibrium is monotone
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Discussion Possible Generalizations

Conclusion

Convergence should be demonstrable in dynamic position
auction models with sufficiently well-behaved static
equilibrium strategies.
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Discussion QED

Questions?
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